ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09839
  4. Cited By
Segment-Anything Models Achieve Zero-shot Robustness in Autonomous
  Driving

Segment-Anything Models Achieve Zero-shot Robustness in Autonomous Driving

19 August 2024
Jun Yan
Pengyu Wang
Danni Wang
Weiquan Huang
Daniel Watzenig
Huilin Yin
    AAML
    VLM
ArXivPDFHTML

Papers citing "Segment-Anything Models Achieve Zero-shot Robustness in Autonomous Driving"

27 / 27 papers shown
Title
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
Timo Kaiser
Thomas Norrenbrock
Bodo Rosenhahn
116
0
0
08 May 2025
Region-Guided Attack on the Segment Anything Model (SAM)
Region-Guided Attack on the Segment Anything Model (SAM)
Xiaoliang Liu
Furao Shen
Jian Zhao
AAML
98
0
0
03 Jan 2025
Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images
Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images
Virmarie Maquiling
Sean Anthony Byrne
D. Niehorster
Marco Carminati
Enkelejda Kasneci
VLM
81
2
0
11 Oct 2024
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAG
MLLM
1.2K
14,179
0
15 Mar 2023
SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
  Boosting Segmentation Robustness
SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and Boosting Segmentation Robustness
Jindong Gu
Hengshuang Zhao
Volker Tresp
Philip Torr
AAML
45
75
0
25 Jul 2022
SegFormer: Simple and Efficient Design for Semantic Segmentation with
  Transformers
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
Enze Xie
Wenhai Wang
Zhiding Yu
Anima Anandkumar
J. Álvarez
Ping Luo
ViT
246
4,990
0
31 May 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
820
29,167
0
26 Feb 2021
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
Maura Pintor
Fabio Roli
Wieland Brendel
Battista Biggio
AAML
74
73
0
25 Feb 2021
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
538
40,739
0
22 Oct 2020
Deep High-Resolution Representation Learning for Visual Recognition
Deep High-Resolution Representation Learning for Visual Recognition
Jingdong Wang
Ke Sun
Tianheng Cheng
Borui Jiang
Chaorui Deng
...
Yadong Mu
Mingkui Tan
Xinggang Wang
Wenyu Liu
Bin Xiao
377
3,602
0
20 Aug 2019
Benchmarking the Robustness of Semantic Segmentation Models
Benchmarking the Robustness of Semantic Segmentation Models
Christoph Kamann
Carsten Rother
VLM
UQCV
48
165
0
14 Aug 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
156
3,423
0
28 Mar 2019
Generalizable Data-free Objective for Crafting Universal Adversarial
  Perturbations
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
100
205
0
24 Jan 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
169
19,204
0
13 Jan 2018
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
Anurag Arnab
O. Mikšík
Philip Torr
AAML
74
308
0
27 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
277
12,029
0
19 Jun 2017
Rethinking Atrous Convolution for Semantic Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
215
8,455
0
17 Jun 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
104
930
0
24 Mar 2017
Adversarial Examples for Semantic Image Segmentation
Adversarial Examples for Semantic Image Segmentation
Volker Fischer
Mummadi Chaithanya Kumar
J. H. Metzen
Thomas Brox
SSeg
GAN
AAML
66
119
0
03 Mar 2017
Pyramid Scene Parsing Network
Pyramid Scene Parsing Network
Hengshuang Zhao
Jianping Shi
Xiaojuan Qi
Xiaogang Wang
Jiaya Jia
VOS
SSeg
594
11,984
0
04 Dec 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
130
2,525
0
26 Oct 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
1.3K
14,543
0
07 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
237
8,548
0
16 Aug 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.0K
11,587
0
06 Apr 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
787
27,303
0
02 Dec 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
998
15,768
0
02 Nov 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.5K
100,213
0
04 Sep 2014
1