ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01101
18
119

Adversarial Examples for Semantic Image Segmentation

3 March 2017
Volker Fischer
Mummadi Chaithanya Kumar
J. H. Metzen
Thomas Brox
    SSeg
    GAN
    AAML
ArXivPDFHTML
Abstract

Machine learning methods in general and Deep Neural Networks in particular have shown to be vulnerable to adversarial perturbations. So far this phenomenon has mainly been studied in the context of whole-image classification. In this contribution, we analyse how adversarial perturbations can affect the task of semantic segmentation. We show how existing adversarial attackers can be transferred to this task and that it is possible to create imperceptible adversarial perturbations that lead a deep network to misclassify almost all pixels of a chosen class while leaving network prediction nearly unchanged outside this class.

View on arXiv
Comments on this paper