ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09461
  4. Cited By
Advancements in Molecular Property Prediction: A Survey of Single and
  Multimodal Approaches

Advancements in Molecular Property Prediction: A Survey of Single and Multimodal Approaches

18 August 2024
Tanya Liyaqat
T. Ahmad
Chandni Saxena
ArXivPDFHTML

Papers citing "Advancements in Molecular Property Prediction: A Survey of Single and Multimodal Approaches"

24 / 24 papers shown
Title
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
50
16
0
26 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
172
317
0
07 Oct 2021
Motif-based Graph Self-Supervised Learning for Molecular Property
  Prediction
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
Zaixin Zhang
Qi Liu
Hao Wang
Chengqiang Lu
Chee-Kong Lee
SSL
AI4CE
83
258
0
03 Oct 2021
Property-Aware Relation Networks for Few-Shot Molecular Property
  Prediction
Property-Aware Relation Networks for Few-Shot Molecular Property Prediction
Yaqing Wang
Abulikemu Abuduweili
Quanming Yao
Dejing Dou
77
70
0
16 Jul 2021
Relational graph convolutional networks for predicting blood-brain
  barrier penetration of drug molecules
Relational graph convolutional networks for predicting blood-brain barrier penetration of drug molecules
Yan Ding
Xiaoqian Jiang
Yejin Kim
GNN
44
19
0
04 Jul 2021
Attention Bottlenecks for Multimodal Fusion
Attention Bottlenecks for Multimodal Fusion
Arsha Nagrani
Shan Yang
Anurag Arnab
A. Jansen
Cordelia Schmid
Chen Sun
98
567
0
30 Jun 2021
On Graph Neural Network Ensembles for Large-Scale Molecular Property
  Prediction
On Graph Neural Network Ensembles for Large-Scale Molecular Property Prediction
E. Kosasih
J. Cabezas
Xavier Sumba
Piotr Bielak
Kamil Tagowski
Kelvin Idanwekhai
Benedict Aaron Tjandra
Arian R. Jamasb
AI4CE
24
9
0
29 Jun 2021
Improving Molecular Graph Neural Network Explainability with
  Orthonormalization and Induced Sparsity
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
Ryan Henderson
Djork-Arné Clevert
F. Montanari
68
27
0
11 May 2021
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Yu Rong
Yatao Bian
Tingyang Xu
Wei-yang Xie
Ying Wei
Wenbing Huang
Junzhou Huang
AI4CE
126
25
0
18 Jun 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
388
1,979
0
11 Apr 2020
Molecule Attention Transformer
Molecule Attention Transformer
Lukasz Maziarka
Tomasz Danel
Slawomir Mucha
Krzysztof Rataj
Jacek Tabor
Stanislaw Jastrzebski
78
170
0
19 Feb 2020
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug
  Discovery
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery
Shion Honda
Shoi Shi
H. Ueda
MedIm
71
175
0
12 Nov 2019
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
653
24,464
0
26 Jul 2019
Toxicity Prediction by Multimodal Deep Learning
Toxicity Prediction by Multimodal Deep Learning
Abdul Karim
Jaspreet Singh
Avinash Mishra
A. Dehzangi
M. A. Hakim Newton
Abdul Sattar
18
15
0
19 Jul 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSL
AI4CE
116
1,404
0
29 May 2019
Provably Powerful Graph Networks
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
118
579
0
27 May 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,317
0
02 Apr 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
94,891
0
11 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
240
7,653
0
01 Oct 2018
SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for
  Predicting Chemical Properties
SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties
Garrett B. Goh
Nathan Oken Hodas
Charles Siegel
Abhinav Vishnu
39
143
0
06 Dec 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,138
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,247
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
335
1,828
0
02 Mar 2017
1