ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18913
  4. Cited By
SOAP-RL: Sequential Option Advantage Propagation for Reinforcement
  Learning in POMDP Environments

SOAP-RL: Sequential Option Advantage Propagation for Reinforcement Learning in POMDP Environments

26 July 2024
Shu Ishida
João F. Henriques
ArXiv (abs)PDFHTMLGithub (2★)

Papers citing "SOAP-RL: Sequential Option Advantage Propagation for Reinforcement Learning in POMDP Environments"

21 / 21 papers shown
Title
Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement
  Learning
Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning
Tuomas Haarnoja
Ben Moran
Guy Lever
Sandy H. Huang
Dhruva Tirumala
...
Andrea Huber
N. Hurley
F. Nori
R. Hadsell
N. Heess
127
153
0
26 Apr 2023
Imitation Is Not Enough: Robustifying Imitation with Reinforcement
  Learning for Challenging Driving Scenarios
Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios
Yiren Lu
Justin Fu
George Tucker
Xinlei Pan
Eli Bronstein
...
Brandyn White
Aleksandra Faust
Shimon Whiteson
Drago Anguelov
Sergey Levine
OffRL
92
96
0
21 Dec 2022
Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online
  Videos
Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos
Bowen Baker
Ilge Akkaya
Peter Zhokhov
Joost Huizinga
Jie Tang
Adrien Ecoffet
Brandon Houghton
Raul Sampedro
Jeff Clune
OffRL
140
303
0
23 Jun 2022
Towards real-world navigation with deep differentiable planners
Towards real-world navigation with deep differentiable planners
Shu Ishida
João F. Henriques
OffRL
36
6
0
08 Aug 2021
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Jesse Zhang
Haonan Yu
Wenyuan Xu
BDL
208
82
0
16 Jan 2021
Accelerating Reinforcement Learning with Learned Skill Priors
Accelerating Reinforcement Learning with Learned Skill Priors
Karl Pertsch
Youngwoon Lee
Joseph J. Lim
OffRLOnRL
105
239
0
22 Oct 2020
Solving Rubik's Cube with a Robot Hand
Solving Rubik's Cube with a Robot Hand
OpenAI
Ilge Akkaya
Marcin Andrychowicz
Maciek Chociej
Ma-teusz Litwin
...
Peter Welinder
Lilian Weng
Qiming Yuan
Wojciech Zaremba
Lei Zhang
ODL
121
1,232
0
16 Oct 2019
AlphaStar: An Evolutionary Computation Perspective
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran
Antoine Cully
Julian Togelius
71
185
0
05 Feb 2019
Learning to Drive in a Day
Learning to Drive in a Day
Alex Kendall
Jeffrey Hawke
David Janz
Przemyslaw Mazur
Daniele Reda
John M. Allen
Vinh-Dieu Lam
Alex Bewley
Amar Shah
108
658
0
01 Jul 2018
Gated Path Planning Networks
Gated Path Planning Networks
Lisa Lee
Emilio Parisotto
Devendra Singh Chaplot
Eric Xing
Ruslan Salakhutdinov
120
83
0
17 Jun 2018
Data-Efficient Hierarchical Reinforcement Learning
Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
OffRL
102
812
0
21 May 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
580
19,315
0
20 Jul 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
98
907
0
03 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
984
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
107
1,028
0
09 Nov 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
80
1,141
0
20 Apr 2016
Value Iteration Networks
Value Iteration Networks
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
82
656
0
09 Feb 2016
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
177
7,678
0
22 Sep 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
135
3,442
0
08 Jun 2015
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,414
0
03 Jun 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
120
3,021
0
19 Jul 2012
1