ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.16223
  4. Cited By
Probabilistic Parameter Estimators and Calibration Metrics for Pose
  Estimation from Image Features

Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features

23 July 2024
Romeo Valentin
Sydney M. Katz
Joonghyun Lee
Don Walker
Matthew Sorgenfrei
Mykel J. Kochenderfer
ArXiv (abs)PDFHTML

Papers citing "Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features"

7 / 7 papers shown
Title
Towards a Framework for Deep Learning Certification in Safety-Critical
  Applications Using Inherently Safe Design and Run-Time Error Detection
Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection
Romeo Valentin
AAML
32
1
0
12 Mar 2024
A Gentle Introduction to Conformal Prediction and Distribution-Free
  Uncertainty Quantification
A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification
Anastasios Nikolas Angelopoulos
Stephen Bates
OOD
204
622
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
229
1,150
0
07 Jul 2021
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
173
451
0
17 Jun 2020
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
359
4,718
0
15 Mar 2017
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,107
0
20 Dec 2014
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
166
4,304
0
18 Nov 2011
1