ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15677
32
1

Language models are robotic planners: reframing plans as goal refinement graphs

22 July 2024
Ateeq Sharfuddin
Travis Breaux
    LLMAG
    LM&Ro
ArXivPDFHTML
Abstract

Successful application of large language models (LLMs) to robotic planning and execution may pave the way to automate numerous real-world tasks. Promising recent research has been conducted showing that the knowledge contained in LLMs can be utilized in making goal-driven decisions that are enactable in interactive, embodied environments. Nonetheless, there is a considerable drop in correctness of programs generated by LLMs. We apply goal modeling techniques from software engineering to large language models generating robotic plans. Specifically, the LLM is prompted to generate a step refinement graph for a task. The executability and correctness of the program converted from this refinement graph is then evaluated. The approach results in programs that are more correct as judged by humans in comparison to previous work.

View on arXiv
Comments on this paper