ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.13755
  4. Cited By
Random Latent Exploration for Deep Reinforcement Learning

Random Latent Exploration for Deep Reinforcement Learning

18 July 2024
Srinath Mahankali
Zhang-Wei Hong
Ayush Sekhari
Alexander Rakhlin
Pulkit Agrawal
ArXivPDFHTML

Papers citing "Random Latent Exploration for Deep Reinforcement Learning"

50 / 64 papers shown
Title
Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models
Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models
Seungjae Lee
Daniel Ekpo
Haowen Liu
Furong Huang
Abhinav Shrivastava
Jia-Bin Huang
LM&Ro
101
0
0
12 May 2025
Highly Efficient Self-Adaptive Reward Shaping for Reinforcement Learning
Highly Efficient Self-Adaptive Reward Shaping for Reinforcement Learning
Haozhe Ma
Zhengding Luo
Thanh Vinh Vo
Kuankuan Sima
Tze-Yun Leong
81
7
0
06 Aug 2024
A Survey Analyzing Generalization in Deep Reinforcement Learning
A Survey Analyzing Generalization in Deep Reinforcement Learning
Ezgi Korkmaz
OffRL
42
3
0
04 Jan 2024
Making RL with Preference-based Feedback Efficient via Randomization
Making RL with Preference-based Feedback Efficient via Randomization
Runzhe Wu
Wen Sun
27
27
0
23 Oct 2023
When is Agnostic Reinforcement Learning Statistically Tractable?
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
64
5
0
09 Oct 2023
Breadcrumbs to the Goal: Goal-Conditioned Exploration from
  Human-in-the-Loop Feedback
Breadcrumbs to the Goal: Goal-Conditioned Exploration from Human-in-the-Loop Feedback
M. Torné
Max Balsells
Zihan Wang
Samedh Desai
Tao Chen
Pulkit Agrawal
Abhishek Gupta
51
8
0
20 Jul 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
70
20
0
29 May 2023
Extreme Q-Learning: MaxEnt RL without Entropy
Extreme Q-Learning: MaxEnt RL without Entropy
Divyansh Garg
Joey Hejna
Matthieu Geist
Stefano Ermon
OffRL
65
75
0
05 Jan 2023
Exploring through Random Curiosity with General Value Functions
Exploring through Random Curiosity with General Value Functions
Aditya A. Ramesh
Louis Kirsch
Sjoerd van Steenkiste
Jürgen Schmidhuber
81
9
0
18 Nov 2022
Redeeming Intrinsic Rewards via Constrained Optimization
Redeeming Intrinsic Rewards via Constrained Optimization
Eric Chen
Zhang-Wei Hong
Joni Pajarinen
Pulkit Agrawal
OnRL
49
24
0
14 Nov 2022
Making Linear MDPs Practical via Contrastive Representation Learning
Making Linear MDPs Practical via Contrastive Representation Learning
Tianjun Zhang
Zhaolin Ren
Mengjiao Yang
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
52
44
0
14 Jul 2022
Guarantees for Epsilon-Greedy Reinforcement Learning with Function
  Approximation
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation
Christoph Dann
Yishay Mansour
M. Mohri
Ayush Sekhari
Karthik Sridharan
70
53
0
19 Jun 2022
Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes
  with Bandit Feedback
Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback
Yan Dai
Haipeng Luo
Liyu Chen
75
19
0
26 May 2022
The Statistical Complexity of Interactive Decision Making
The Statistical Complexity of Interactive Decision Making
Dylan J. Foster
Sham Kakade
Jian Qian
Alexander Rakhlin
345
180
0
27 Dec 2021
Feel-Good Thompson Sampling for Contextual Bandits and Reinforcement
  Learning
Feel-Good Thompson Sampling for Contextual Bandits and Reinforcement Learning
Tong Zhang
50
64
0
02 Oct 2021
A Survey of Exploration Methods in Reinforcement Learning
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
58
83
0
01 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
96
670
0
30 Aug 2021
Isaac Gym: High Performance GPU-Based Physics Simulation For Robot
  Learning
Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning
Viktor Makoviychuk
Lukasz Wawrzyniak
Yunrong Guo
Michelle Lu
Kier Storey
...
David Hoeller
Nikita Rudin
Arthur Allshire
Ankur Handa
Gavriel State
151
1,065
0
24 Aug 2021
Randomized Exploration for Reinforcement Learning with General Value
  Function Approximation
Randomized Exploration for Reinforcement Learning with General Value Function Approximation
Haque Ishfaq
Qiwen Cui
V. Nguyen
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
54
43
0
15 Jun 2021
Bilinear Classes: A Structural Framework for Provable Generalization in
  RL
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
154
191
0
19 Mar 2021
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Benjamin Eysenbach
Sergey Levine
OOD
76
181
0
10 Mar 2021
On The Effect of Auxiliary Tasks on Representation Dynamics
On The Effect of Auxiliary Tasks on Representation Dynamics
Clare Lyle
Mark Rowland
Georg Ostrovski
Will Dabney
60
70
0
25 Feb 2021
Meta-Thompson Sampling
Meta-Thompson Sampling
Branislav Kveton
Mikhail Konobeev
Manzil Zaheer
Chih-Wei Hsu
Martin Mladenov
Craig Boutilier
Csaba Szepesvári
76
60
0
11 Feb 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and
  Sample-Efficient Algorithms
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
86
216
0
01 Feb 2021
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient
  Learning
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
55
109
0
16 Jul 2020
Hypermodels for Exploration
Hypermodels for Exploration
Vikranth Dwaracherla
Xiuyuan Lu
M. Ibrahimi
Ian Osband
Zheng Wen
Benjamin Van Roy
BDL
45
45
0
12 Jun 2020
The Value-Improvement Path: Towards Better Representations for
  Reinforcement Learning
The Value-Improvement Path: Towards Better Representations for Reinforcement Learning
Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
50
67
0
03 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
83
304
0
01 Jun 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
71
358
0
27 Apr 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
63
519
0
30 Mar 2020
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration
Andrea Zanette
David Brandfonbrener
Emma Brunskill
Matteo Pirotta
A. Lazaric
62
128
0
01 Nov 2019
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Sharan Vaswani
Abbas Mehrabian
A. Durand
Branislav Kveton
27
28
0
11 Oct 2019
Benchmarking Bonus-Based Exploration Methods on the Arcade Learning
  Environment
Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment
Adrien Ali Taïga
W. Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
51
40
0
06 Aug 2019
Provably Efficient Reinforcement Learning with Linear Function
  Approximation
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
86
556
0
11 Jul 2019
Randomized Exploration in Generalized Linear Bandits
Randomized Exploration in Generalized Linear Bandits
Branislav Kveton
Manzil Zaheer
Csaba Szepesvári
Lihong Li
Mohammad Ghavamzadeh
Craig Boutilier
40
97
0
21 Jun 2019
Self-Supervised Exploration via Disagreement
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
73
380
0
10 Jun 2019
Perturbed-History Exploration in Stochastic Linear Bandits
Perturbed-History Exploration in Stochastic Linear Bandits
Branislav Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
31
41
0
21 Mar 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
71
368
0
30 Jan 2019
Provably Efficient Maximum Entropy Exploration
Provably Efficient Maximum Entropy Exploration
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
67
297
0
06 Dec 2018
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Branislav Kveton
Csaba Szepesvári
Sharan Vaswani
Zheng Wen
Mohammad Ghavamzadeh
Tor Lattimore
133
70
0
13 Nov 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
147
1,327
0
30 Oct 2018
Large-Scale Study of Curiosity-Driven Learning
Large-Scale Study of Curiosity-Driven Learning
Yuri Burda
Harrison Edwards
Deepak Pathak
Amos Storkey
Trevor Darrell
Alexei A. Efros
LRM
69
702
0
13 Aug 2018
Visual Reinforcement Learning with Imagined Goals
Visual Reinforcement Learning with Imagined Goals
Ashvin Nair
Vitchyr H. Pong
Murtaza Dalal
Shikhar Bahl
Steven Lin
Sergey Levine
SSL
72
543
0
12 Jul 2018
Diversity is All You Need: Learning Skills without a Reward Function
Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
89
1,083
0
16 Feb 2018
Diversity-Driven Exploration Strategy for Deep Reinforcement Learning
Diversity-Driven Exploration Strategy for Deep Reinforcement Learning
Zhang-Wei Hong
Tzu-Yun Shann
Shih-Yang Su
Yi-Hsiang Chang
Chun-Yi Lee
57
123
0
13 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
287
8,313
0
04 Jan 2018
Intrinsically Motivated Goal Exploration Processes with Automatic
  Curriculum Learning
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning
Sébastien Forestier
Rémy Portelas
Yoan Mollard
Pierre-Yves Oudeyer
69
188
0
07 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
446
18,931
0
20 Jul 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
79
893
0
30 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
656
131,414
0
12 Jun 2017
12
Next