ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.09926
  4. Cited By
Metric Learning for Clifford Group Equivariant Neural Networks

Metric Learning for Clifford Group Equivariant Neural Networks

13 July 2024
Riccardo Ali
Paulina Kulyt.e
Haitz Sáez de Ocáriz Borde
Pietro Lio
ArXivPDFHTML

Papers citing "Metric Learning for Clifford Group Equivariant Neural Networks"

17 / 17 papers shown
Title
AMES: A Differentiable Embedding Space Selection Framework for Latent
  Graph Inference
AMES: A Differentiable Embedding Space Selection Framework for Latent Graph Inference
Yuan Lu
Haitz Sáez de Ocáriz Borde
Pietro Lio
54
2
0
20 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
155
5
0
23 Oct 2023
Neural Latent Geometry Search: Product Manifold Inference via
  Gromov-Hausdorff-Informed Bayesian Optimization
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian Optimization
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ismael Morales
Ingmar Posner
Xiaowen Dong
58
10
0
09 Sep 2023
Projections of Model Spaces for Latent Graph Inference
Projections of Model Spaces for Latent Graph Inference
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ingmar Posner
42
9
0
21 Mar 2023
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
87
89
0
08 Sep 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
  Oversmoothing in GNNs
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio
Michael M. Bronstein
69
179
0
09 Feb 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas Guibas
3DPC
170
325
0
25 Apr 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
94
997
0
19 Feb 2021
Learning from Protein Structure with Geometric Vector Perceptrons
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
64
482
0
03 Sep 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
149
692
0
18 Jun 2020
Hyperbolic Neural Networks
Hyperbolic Neural Networks
O. Ganea
Gary Bécigneul
Thomas Hofmann
52
603
0
23 May 2018
Deep Quaternion Networks
Deep Quaternion Networks
Chase J. Gaudet
Anthony Maida
58
162
0
13 Dec 2017
Backprop as Functor: A compositional perspective on supervised learning
Backprop as Functor: A compositional perspective on supervised learning
Brendan Fong
David I. Spivak
Rémy Tuyéras
63
95
0
28 Nov 2017
Deep Complex Networks
Deep Complex Networks
C. Trabelsi
O. Bilaniuk
Ying Zhang
Dmitriy Serdyuk
Sandeep Subramanian
J. F. Santos
Soroush Mehri
Negar Rostamzadeh
Yoshua Bengio
C. Pal
178
833
0
27 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
580
7,441
0
04 Apr 2017
Associative Long Short-Term Memory
Associative Long Short-Term Memory
Ivo Danihelka
Greg Wayne
Benigno Uria
Nal Kalchbrenner
Alex Graves
54
178
0
09 Feb 2016
Unitary Evolution Recurrent Neural Networks
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
75
769
0
20 Nov 2015
1