ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.01905
  4. Cited By
Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with
  Dual Conditioning

Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning

2 July 2024
Jiawei Zhan
Jinxiang Lai
Bin-Bin Gao
Jun Liu
Xiaochen Chen
Chengjie Wang
ArXivPDFHTML

Papers citing "Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning"

28 / 28 papers shown
Title
A Survey on Diffusion Models for Anomaly Detection
A Survey on Diffusion Models for Anomaly Detection
Qingbin Liu
Zhenchao Ma
Zepu Wang
Yang Liu
Zehua Wang
Peng Sun
Liang Song
Bo Hu
Azzedine Boukerche
Victor C.M. Leung
DiffM
MedIm
77
5
0
20 Jan 2025
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
Zhikang Liu
Yiming Zhou
Yuansheng Xu
Zilei Wang
109
251
0
27 Mar 2023
Registration based Few-Shot Anomaly Detection
Registration based Few-Shot Anomaly Detection
Chaoqin Huang
Haoyan Guan
Aofan Jiang
Ya Zhang
Michael W. Spratling
Yanfeng Wang
74
145
0
15 Jul 2022
A Unified Model for Multi-class Anomaly Detection
A Unified Model for Multi-class Anomaly Detection
Zhiyuan You
Lei Cui
Yujun Shen
Kai Yang
Xin Lu
Yu Zheng
Xinyi Le
70
223
0
08 Jun 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
419
15,515
0
20 Dec 2021
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao
Karsten Kreis
Arash Vahdat
DiffM
98
552
0
15 Dec 2021
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi
Sungwon Kim
Yonghyun Jeong
Youngjune Gwon
Sungroh Yoon
DiffM
127
721
0
06 Aug 2021
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential
  Equations
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng
Yutong He
Yang Song
Jiaming Song
Jiajun Wu
Jun-Yan Zhu
Stefano Ermon
DiffM
144
1,489
0
02 Aug 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
224
7,857
0
11 May 2021
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and
  Localization
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization
P. Mishra
Riccardo Verk
Daniele Fornasier
C. Piciarelli
G. Foresti
ViT
102
300
0
20 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
95
500
0
08 Mar 2021
Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Unsupervised Brain Anomaly Detection and Segmentation with Transformers
W. H. Pinaya
Petru-Daniel Tudosiu
Robert J. Gray
G. Rees
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
ViT
MedIm
62
61
0
23 Feb 2021
Deep Learning for Medical Anomaly Detection -- A Survey
Deep Learning for Medical Anomaly Detection -- A Survey
Tharindu Fernando
Harshala Gammulle
Simon Denman
Sridha Sridharan
Clinton Fookes
OOD
43
276
0
04 Dec 2020
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
840
0
17 Nov 2020
PANDA: Adapting Pretrained Features for Anomaly Detection and
  Segmentation
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Tal Reiss
Niv Cohen
Liron Bergman
Yedid Hoshen
66
251
0
12 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
272
7,384
0
06 Oct 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
143
385
0
29 Jun 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
123
239
0
28 May 2020
Old is Gold: Redefining the Adversarially Learned One-Class Classifier
  Training Paradigm
Old is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm
M. Zaheer
Jin-ha Lee
Marcella Astrid
Seung-Ik Lee
AAML
65
222
0
16 Apr 2020
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
97
217
0
18 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
74
664
0
06 Nov 2019
Generalization in Generation: A closer look at Exposure Bias
Generalization in Generation: A closer look at Exposure Bias
Florian Schmidt
88
88
0
01 Oct 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
139
18,134
0
28 May 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
110
526
0
20 Mar 2019
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
226
5,019
0
02 Nov 2017
Neural Photo Editing with Introspective Adversarial Networks
Neural Photo Editing with Introspective Adversarial Networks
Andrew Brock
Theodore Lim
J. Ritchie
Nick Weston
GAN
77
458
0
22 Sep 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
301
6,949
0
12 Mar 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
1