ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15904
  4. Cited By
Learning When the Concept Shifts: Confounding, Invariance, and Dimension
  Reduction

Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction

22 June 2024
Kulunu Dharmakeerthi
Y. Hur
Tengyuan Liang
ArXivPDFHTML

Papers citing "Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction"

8 / 8 papers shown
Title
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics,
  Directional Convergence, and Equilibria
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
54
1
0
05 Dec 2022
Marginal Singularity, and the Benefits of Labels in Covariate-Shift
Marginal Singularity, and the Benefits of Labels in Covariate-Shift
Samory Kpotufe
Guillaume Martinet
120
95
0
05 Mar 2018
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic
  Differentiation
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
James Townsend
Niklas Koep
S. Weichwald
73
247
0
10 Mar 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,467
0
28 May 2015
Learning Transferable Features with Deep Adaptation Networks
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
215
5,189
0
10 Feb 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
114
966
0
06 Jan 2015
Deep Domain Confusion: Maximizing for Domain Invariance
Deep Domain Confusion: Maximizing for Domain Invariance
Eric Tzeng
Judy Hoffman
Ning Zhang
Kate Saenko
Trevor Darrell
OOD
167
2,598
0
10 Dec 2014
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
81
607
0
27 Jun 2012
1