ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15093
  4. Cited By
ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse
  Diffusion Purification
v1v2 (latest)

ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse Diffusion Purification

21 June 2024
Xianlong Wang
Shengshan Hu
Yechao Zhang
Ziqi Zhou
Leo Yu Zhang
Peng Xu
Wei Wan
Hai Jin
    AAML
ArXiv (abs)PDFHTMLGithub (4★)

Papers citing "ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse Diffusion Purification"

26 / 26 papers shown
Title
Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples
Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples
Ziqi Zhou
Minghui Li
Wei Liu
Shengshan Hu
Yechao Zhang
Wei Wan
Lulu Xue
Leo Yu Zhang
Dezhong Yao
Hai Jin
SILMAAML
94
10
0
16 Mar 2024
Why Does Little Robustness Help? Understanding and Improving Adversarial
  Transferability from Surrogate Training
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
105
23
0
15 Jul 2023
The Devil's Advocate: Shattering the Illusion of Unexploitable Data
  using Diffusion Models
The Devil's Advocate: Shattering the Illusion of Unexploitable Data using Diffusion Models
H. M. Dolatabadi
S. Erfani
C. Leckie
DiffM
95
18
0
15 Mar 2023
CUDA: Convolution-based Unlearnable Datasets
CUDA: Convolution-based Unlearnable Datasets
Vinu Sankar Sadasivan
Mahdi Soltanolkotabi
Soheil Feizi
MU
53
25
0
07 Mar 2023
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Sizhe Chen
Geng Yuan
Xinwen Cheng
Yifan Gong
Minghai Qin
Yanzhi Wang
Xiaolin Huang
AAML
62
20
0
22 Nov 2022
Transferable Unlearnable Examples
Transferable Unlearnable Examples
Jie Ren
Han Xu
Yuxuan Wan
Xingjun Ma
Lichao Sun
Jiliang Tang
83
36
0
18 Oct 2022
Autoregressive Perturbations for Data Poisoning
Autoregressive Perturbations for Data Poisoning
Pedro Sandoval-Segura
Vasu Singla
Jonas Geiping
Micah Goldblum
Tom Goldstein
David Jacobs
AAML
73
41
0
08 Jun 2022
Diffusion Models for Adversarial Purification
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
263
444
0
16 May 2022
Poisons that are learned faster are more effective
Poisons that are learned faster are more effective
Pedro Sandoval-Segura
Vasu Singla
Liam H. Fowl
Jonas Geiping
Micah Goldblum
David Jacobs
Tom Goldstein
62
17
0
19 Apr 2022
Availability Attacks Create Shortcuts
Availability Attacks Create Shortcuts
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
AAML
96
58
0
01 Nov 2021
Adversarial Examples Make Strong Poisons
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
85
135
0
21 Jun 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
349
3,702
0
18 Feb 2021
Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
  Dataset Release
Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure Dataset Release
Liam H. Fowl
Ping Yeh-Chiang
Micah Goldblum
Jonas Geiping
Arpit Bansal
W. Czaja
Tom Goldstein
60
43
0
16 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
160
670
0
22 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
234
193
0
13 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
344
6,480
0
26 Nov 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
209
2,052
0
16 Apr 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient
  Shaping
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
82
136
0
26 Feb 2020
Learning to Confuse: Generating Training Time Adversarial Data with
  Auto-Encoder
Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder
Ji Feng
Qi-Zhi Cai
Zhi Zhou
AAML
58
105
0
22 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
620
4,780
0
13 May 2019
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
280
9,764
0
25 Oct 2017
Towards Poisoning of Deep Learning Algorithms with Back-gradient
  Optimization
Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization
Luis Muñoz-González
Battista Biggio
Ambra Demontis
Andrea Paudice
Vasin Wongrassamee
Emil C. Lupu
Fabio Roli
AAML
99
633
0
29 Aug 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
117
3,765
0
15 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,069
0
19 Jun 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,813
0
25 Aug 2016
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,386
0
04 Sep 2014
1