ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.08840
  4. Cited By
Conceptual Learning via Embedding Approximations for Reinforcing
  Interpretability and Transparency

Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency

13 June 2024
Maor Dikter
Tsachi Blau
Chaim Baskin
ArXiv (abs)PDFHTMLGithub (4★)

Papers citing "Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency"

48 / 48 papers shown
Title
Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning
Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning
Andrei Semenov
Vladimir Ivanov
Aleksandr Beznosikov
Alexander Gasnikov
60
6
0
04 Apr 2024
On the Concept Trustworthiness in Concept Bottleneck Models
On the Concept Trustworthiness in Concept Bottleneck Models
Qihan Huang
Mingli Song
Jingwen Hu
Haofei Zhang
Yong Wang
Mingli Song
74
11
0
21 Mar 2024
CEIR: Concept-based Explainable Image Representation Learning
CEIR: Concept-based Explainable Image Representation Learning
Yan Cui
Shuhong Liu
Liuzhuozheng Li
Zhiyuan Yuan
SSLVLM
46
3
0
17 Dec 2023
CLIP-QDA: An Explainable Concept Bottleneck Model
CLIP-QDA: An Explainable Concept Bottleneck Model
Rémi Kazmierczak
Eloise Berthier
Goran Frehse
Gianni Franchi
52
7
0
30 Nov 2023
Interpreting Pretrained Language Models via Concept Bottlenecks
Interpreting Pretrained Language Models via Concept Bottlenecks
Zhen Tan
Lu Cheng
Song Wang
Yuan Bo
Wenlin Yao
Huan Liu
LRM
68
24
0
08 Nov 2023
Concept Bottleneck with Visual Concept Filtering for Explainable Medical
  Image Classification
Concept Bottleneck with Visual Concept Filtering for Explainable Medical Image Classification
In-Ho Kim
Jongha Kim
Joon-Young Choi
Hyunwoo J. Kim
49
14
0
23 Aug 2023
Learning Concise and Descriptive Attributes for Visual Recognition
Learning Concise and Descriptive Attributes for Visual Recognition
Andy Yan
Yu Wang
Yiwu Zhong
Chengyu Dong
Zexue He
Yujie Lu
William Wang
Jingbo Shang
Julian McAuley
VLM
92
63
0
07 Aug 2023
GIST: Generating Image-Specific Text for Fine-grained Object
  Classification
GIST: Generating Image-Specific Text for Fine-grained Object Classification
Kathleen M. Lewis
Emily Mu
Adrian Dalca
John Guttag
VLM
41
7
0
21 Jul 2023
Text Descriptions are Compressive and Invariant Representations for
  Visual Learning
Text Descriptions are Compressive and Invariant Representations for Visual Learning
Zhili Feng
Anna Bair
J. Zico Kolter
VLM
48
6
0
10 Jul 2023
DesCo: Learning Object Recognition with Rich Language Descriptions
DesCo: Learning Object Recognition with Rich Language Descriptions
Liunian Harold Li
Zi-Yi Dou
Nanyun Peng
Kai-Wei Chang
ObjDVLM
62
22
0
24 Jun 2023
Probabilistic Concept Bottleneck Models
Probabilistic Concept Bottleneck Models
Eunji Kim
Dahuin Jung
Sangha Park
Siwon Kim
Sung-Hoon Yoon
121
70
0
02 Jun 2023
Label-Free Concept Bottleneck Models
Label-Free Concept Bottleneck Models
Tuomas P. Oikarinen
Subhro Das
Lam M. Nguyen
Tsui-Wei Weng
86
177
0
12 Apr 2023
TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation
  with Question Answering
TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation with Question Answering
Yushi Hu
Benlin Liu
Jungo Kasai
Yizhong Wang
Mari Ostendorf
Ranjay Krishna
Noah A. Smith
EGVM
65
237
0
21 Mar 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAGMLLM
1.5K
14,631
0
15 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.5K
13,420
0
27 Feb 2023
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image
  Encoders and Large Language Models
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Junnan Li
Dongxu Li
Silvio Savarese
Steven C. H. Hoi
VLMMLLM
429
4,563
0
30 Jan 2023
Interactive Concept Bottleneck Models
Interactive Concept Bottleneck Models
Kushal Chauhan
Rishabh Tiwari
Jan Freyberg
Pradeep Shenoy
Krishnamurthy Dvijotham
58
55
0
14 Dec 2022
Learn to explain yourself, when you can: Equipping Concept Bottleneck
  Models with the ability to abstain on their concept predictions
Learn to explain yourself, when you can: Equipping Concept Bottleneck Models with the ability to abstain on their concept predictions
J. Lockhart
Daniele Magazzeni
Manuela Veloso
32
4
0
21 Nov 2022
Language in a Bottle: Language Model Guided Concept Bottlenecks for
  Interpretable Image Classification
Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification
Yue Yang
Artemis Panagopoulou
Shenghao Zhou
Daniel Jin
Chris Callison-Burch
Mark Yatskar
116
232
0
21 Nov 2022
Visual Classification via Description from Large Language Models
Visual Classification via Description from Large Language Models
Sachit Menon
Carl Vondrick
VLM
64
302
0
13 Oct 2022
B-cos Networks: Alignment is All We Need for Interpretability
B-cos Networks: Alignment is All We Need for Interpretability
Moritz D Boehle
Mario Fritz
Bernt Schiele
96
86
0
20 May 2022
All You May Need for VQA are Image Captions
All You May Need for VQA are Image Captions
Soravit Changpinyo
Doron Kukliansky
Idan Szpektor
Xi Chen
Nan Ding
Radu Soricut
61
73
0
04 May 2022
Flamingo: a Visual Language Model for Few-Shot Learning
Flamingo: a Visual Language Model for Few-Shot Learning
Jean-Baptiste Alayrac
Jeff Donahue
Pauline Luc
Antoine Miech
Iain Barr
...
Mikolaj Binkowski
Ricardo Barreira
Oriol Vinyals
Andrew Zisserman
Karen Simonyan
MLLMVLM
418
3,585
0
29 Apr 2022
NLX-GPT: A Model for Natural Language Explanations in Vision and
  Vision-Language Tasks
NLX-GPT: A Model for Natural Language Explanations in Vision and Vision-Language Tasks
Fawaz Sammani
Tanmoy Mukherjee
Nikos Deligiannis
MILMELMLRM
101
68
0
09 Mar 2022
Concept Bottleneck Model with Additional Unsupervised Concepts
Concept Bottleneck Model with Additional Unsupervised Concepts
Yoshihide Sawada
Keigo Nakamura
SSL
64
73
0
03 Feb 2022
LaMDA: Language Models for Dialog Applications
LaMDA: Language Models for Dialog Applications
R. Thoppilan
Daniel De Freitas
Jamie Hall
Noam M. Shazeer
Apoorv Kulshreshtha
...
Blaise Aguera-Arcas
Claire Cui
M. Croak
Ed H. Chi
Quoc Le
ALM
137
1,600
0
20 Jan 2022
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,731
0
26 Feb 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
148
269
0
03 Dec 2020
On Explaining Decision Trees
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
79
88
0
21 Oct 2020
Concept Bottleneck Models
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
99
828
0
09 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
658
18,276
0
19 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
826
42,332
0
28 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
446
10,591
0
17 Feb 2020
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
93
1,074
0
03 Oct 2019
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for
  Vision-and-Language Tasks
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
Jiasen Lu
Dhruv Batra
Devi Parikh
Stefan Lee
SSLVLM
231
3,693
0
06 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
115
418
0
17 May 2019
Multimodal Explanations: Justifying Decisions and Pointing to the
  Evidence
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Anna Rohrbach
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
78
422
0
15 Feb 2018
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,306
0
30 Oct 2017
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model
  Distillation
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
106
186
0
17 Oct 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,879
0
10 Apr 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Layer-wise Relevance Propagation for Neural Networks with Local
  Renormalization Layers
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
77
462
0
04 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
250
9,326
0
14 Dec 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
306
7,005
0
12 Mar 2015
1