ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03288
  4. Cited By
Embarrassingly Parallel GFlowNets

Embarrassingly Parallel GFlowNets

5 June 2024
Tiago da Silva
Luiz Max Carvalho
Amauri Souza
Samuel Kaski
Diego Mesquita
ArXivPDFHTML

Papers citing "Embarrassingly Parallel GFlowNets"

16 / 16 papers shown
Title
Compositional Sculpting of Iterative Generative Processes
Compositional Sculpting of Iterative Generative Processes
Yixuan Wang
Sebastiaan De Peuter
Mingtong Zhang
Vikas Garg
Samuel Kaski
Tommi Jaakkola
DiffM
61
14
0
28 Sep 2023
GFlowNet-EM for learning compositional latent variable models
GFlowNet-EM for learning compositional latent variable models
J. E. Hu
Nikolay Malkin
Moksh Jain
Katie Everett
Alexandros Graikos
Yoshua Bengio
CoGe
65
40
0
13 Feb 2023
Robust Scheduling with GFlowNets
Robust Scheduling with GFlowNets
David W. Zhang
Corrado Rainone
M. Peschl
Roberto Bondesan
73
56
0
17 Jan 2023
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
86
11
0
22 Feb 2022
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
94
327
0
08 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated
  learning
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Aymeric Dieuleveut
Eric Moulines
FedML
53
36
0
01 Jun 2021
DiBS: Differentiable Bayesian Structure Learning
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
43
87
0
25 May 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To
  Game
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
59
141
0
26 Feb 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
178
51
0
20 Oct 2020
Learn distributed GAN with Temporary Discriminators
Learn distributed GAN with Temporary Discriminators
Hui Qu
Yikai Zhang
Qi Chang
Zhennan Yan
Chao Chen
Dimitris N. Metaxas
FedML
36
16
0
17 Jul 2020
Synthetic Learning: Learn From Distributed Asynchronized Discriminator
  GAN Without Sharing Medical Image Data
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data
Qi Chang
Hui Qu
Yikai Zhang
M. Sabuncu
Chao Chen
Tong Zhang
Dimitris N. Metaxas
MedIm
64
79
0
29 May 2020
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
228
7,638
0
01 Oct 2018
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
57
50
0
27 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
Parallelizing MCMC with Random Partition Trees
Parallelizing MCMC with Random Partition Trees
Xiangyu Wang
Fangjian Guo
Katherine A. Heller
David B. Dunson
80
76
0
10 Jun 2015
Asymptotically Exact, Embarrassingly Parallel MCMC
Asymptotically Exact, Embarrassingly Parallel MCMC
Willie Neiswanger
Chong-Jun Wang
Eric Xing
FedML
83
330
0
19 Nov 2013
1