ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02176
  4. Cited By
AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local
  Neural Fields

AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields

4 June 2024
Louis Serrano
Thomas X. Wang
E. L. Naour
Jean-Noël Vittaut
Patrick Gallinari
ArXivPDFHTML

Papers citing "AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields"

8 / 8 papers shown
Title
Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations
Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations
Giovanni Catalani
Michaël Bauerheim
Frédéric Tost
Xavier Bertrand
Joseph Morlier
AI4CE
52
0
0
24 Apr 2025
SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields
SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields
David K. Park
Xihaier Luo
Guang Zhao
Seungjun Lee
M. Oprescu
Shinjae Yoo
AI4TS
27
0
0
16 Apr 2025
Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
Louis Serrano
Armand K. Koupai
Thomas X. Wang
Pierre Erbacher
Patrick Gallinari
AI4CE
35
3
0
04 Oct 2024
Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
Anthony Y. Zhou
Zijie Li
Michael Schneier
John R Buchanan Jr
Amir Barati Farimani
AI4CE
DiffM
67
5
0
02 Oct 2024
Transolver: A Fast Transformer Solver for PDEs on General Geometries
Transolver: A Fast Transformer Solver for PDEs on General Geometries
Haixu Wu
Huakun Luo
Haowen Wang
Jianmin Wang
Mingsheng Long
AI4CE
46
42
0
04 Feb 2024
From data to functa: Your data point is a function and you can treat it
  like one
From data to functa: Your data point is a function and you can treat it like one
Emilien Dupont
Hyunjik Kim
S. M. Ali Eslami
Danilo Jimenez Rezende
Dan Rosenbaum
TDI
3DPC
178
139
0
28 Jan 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
114
355
0
05 Oct 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
220
2,287
0
18 Oct 2020
1