ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18674
  4. Cited By
Deep Bayesian Filter for Bayes-faithful Data Assimilation

Deep Bayesian Filter for Bayes-faithful Data Assimilation

29 May 2024
Yuta Tarumi
Keisuke Fukuda
Shin-ichi Maeda
ArXivPDFHTML

Papers citing "Deep Bayesian Filter for Bayes-faithful Data Assimilation"

19 / 19 papers shown
Title
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Albert Gu
Tri Dao
Mamba
124
2,636
0
01 Dec 2023
Deep Learning for Day Forecasts from Sparse Observations
Deep Learning for Day Forecasts from Sparse Observations
Marcin Andrychowicz
L. Espeholt
Di Li
Samier Merchant
Alexander Merose
Fred Zyda
Shreya Agrawal
Nal Kalchbrenner
AI4Cl
64
65
0
06 Jun 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
59
10
0
27 Jan 2023
Deep Latent State Space Models for Time-Series Generation
Deep Latent State Space Models for Time-Series Generation
Linqi Zhou
Michael Poli
Winnie Xu
Stefano Massaroli
Stefano Ermon
BDL
AI4TS
46
35
0
24 Dec 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
184
1,761
0
31 Oct 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
52
279
0
21 Jul 2021
Auto-differentiable Ensemble Kalman Filters
Auto-differentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
70
36
0
16 Jul 2021
Variational Data Assimilation with a Learned Inverse Observation
  Operator
Variational Data Assimilation with a Learned Inverse Observation Operator
Thomas Frerix
Dmitrii Kochkov
Jamie A. Smith
Daniel Cremers
M. Brenner
Stephan Hoyer
51
30
0
22 Feb 2021
Dynamical Variational Autoencoders: A Comprehensive Review
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
68
214
0
28 Aug 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
135
149
0
04 Mar 2020
LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking
LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking
Heng Fan
Liting Lin
Fan Yang
Peng Chu
Ge Deng
Sijia Yu
Hexin Bai
Yong-mei Xu
Chunyuan Liao
Haibin Ling
VOT
154
1,163
0
20 Sep 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
67
1,245
0
27 Dec 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
58
283
0
16 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
43
370
0
12 Oct 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
86
456
0
30 Sep 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
109
397
0
24 May 2016
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
67
372
0
16 Nov 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
82
1,256
0
07 Jun 2015
On the Stability of Sequential Monte Carlo Methods in High Dimensions
On the Stability of Sequential Monte Carlo Methods in High Dimensions
A. Beskos
Dan Crisan
Ajay Jasra
110
172
0
21 Mar 2011
1