ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.17955
  4. Cited By
Efficient Prior Calibration From Indirect Data
v1v2 (latest)

Efficient Prior Calibration From Indirect Data

28 May 2024
O. Deniz Akyildiz
Mark Girolami
Andrew M. Stuart
Arnaud Vadeboncoeur
ArXiv (abs)PDFHTML

Papers citing "Efficient Prior Calibration From Indirect Data"

40 / 40 papers shown
Title
Stochastic Inverse Problem: stability, regularization and Wasserstein
  gradient flow
Stochastic Inverse Problem: stability, regularization and Wasserstein gradient flow
Qin Li
Maria Oprea
Li Wang
Yunan Yang
43
3
0
30 Sep 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
Arnaud Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
121
0
0
10 Sep 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
99
2
0
27 Apr 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow
  Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
95
12
0
27 Mar 2024
Tweedie Moment Projected Diffusions For Inverse Problems
Tweedie Moment Projected Diffusions For Inverse Problems
Benjamin Boys
Mark Girolami
Jakiw Pidstrigach
Sebastian Reich
Alan Mosca
O. Deniz Akyildiz
MedIm
69
33
0
10 Oct 2023
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
Giannis Daras
Kulin Shah
Y. Dagan
Aravind Gollakota
A. Dimakis
Adam R. Klivans
DiffM
109
75
0
30 May 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
77
22
0
26 Apr 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine Bouman
William T. Freeman
DiffM
138
98
0
23 Apr 2023
Image Reconstruction without Explicit Priors
Image Reconstruction without Explicit Priors
Angela F. Gao
Oscar Leong
He Sun
Katherine Bouman
62
8
0
21 Mar 2023
Random Grid Neural Processes for Parametric Partial Differential
  Equations
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
82
11
0
26 Jan 2023
Fully probabilistic deep models for forward and inverse problems in
  parametric PDEs
Fully probabilistic deep models for forward and inverse problems in parametric PDEs
Arnaud Vadeboncoeur
Ömer Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
F. Cirak
AI4CE
58
18
0
09 Aug 2022
Physics-Informed Neural Operator for Learning Partial Differential
  Equations
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
121
424
0
06 Nov 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
87
265
0
09 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
370
6,586
0
26 Nov 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
509
2,453
0
18 Oct 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
742
18,364
0
19 Jun 2020
A probabilistic generative model for semi-supervised training of
  coarse-grained surrogates and enforcing physical constraints through virtual
  observables
A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables
Maximilian Rixner
P. Koutsourelakis
AI4CE
69
22
0
02 Jun 2020
Model Reduction and Neural Networks for Parametric PDEs
Model Reduction and Neural Networks for Parametric PDEs
K. Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
228
333
0
07 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
535
10,591
0
17 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
213
1,717
0
05 Dec 2019
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Kimia Nadjahi
Valentin De Bortoli
Alain Durmus
Roland Badeau
Umut Simsekli
62
26
0
28 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,158
0
08 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,961
0
12 Jul 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
164
154
0
28 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
109
2,506
0
19 Apr 2019
Max-Sliced Wasserstein Distance and its use for GANs
Max-Sliced Wasserstein Distance and its use for GANs
Ishani Deshpande
Yuan-Ting Hu
Ruoyu Sun
A. Pyrros
Nasir Siddiqui
Oluwasanmi Koyejo
Zhizhen Zhao
David A. Forsyth
Alex Schwing
GAN
56
201
0
11 Apr 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINNAI4CE
115
871
0
18 Jan 2019
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
98
122
0
21 Jun 2018
Learning to solve inverse problems using Wasserstein loss
Learning to solve inverse problems using Wasserstein loss
J. Adler
Axel Ringh
Ozan Oktem
Johan Karlsson
58
38
0
30 Oct 2017
A Review on Bilevel Optimization: From Classical to Evolutionary
  Approaches and Applications
A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications
Ankur Sinha
P. Malo
Kalyanmoy Deb
46
760
0
17 May 2017
A Consistent Bayesian Formulation for Stochastic Inverse Problems Based
  on Push-forward Measures
A Consistent Bayesian Formulation for Stochastic Inverse Problems Based on Push-forward Measures
T. Butler
J. Jakeman
T. Wildey
34
13
0
03 Apr 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
174
5,049
0
27 Jun 2016
An introduction to sampling via measure transport
An introduction to sampling via measure transport
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
OT
100
89
0
16 Feb 2016
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
91
530
0
14 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Well-Posed Bayesian Geometric Inverse Problems Arising in Subsurface
  Flow
Well-Posed Bayesian Geometric Inverse Problems Arising in Subsurface Flow
M. Iglesias
Kui Lin
Andrew M. Stuart
69
83
0
22 Jan 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
220
4,294
0
04 Jun 2013
Equivalence of distance-based and RKHS-based statistics in hypothesis
  testing
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
Dino Sejdinovic
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
232
688
0
25 Jul 2012
Bayesian Inference with Optimal Maps
Bayesian Inference with Optimal Maps
Tarek A. El-Moselhy
Youssef M. Marzouk
120
290
0
07 Sep 2011
Uncertainty quantification and weak approximation of an elliptic inverse
  problem
Uncertainty quantification and weak approximation of an elliptic inverse problem
Masoumeh Dashti
Andrew M. Stuart
73
102
0
01 Feb 2011
1