ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.17425
  4. Cited By
From Neurons to Neutrons: A Case Study in Interpretability

From Neurons to Neutrons: A Case Study in Interpretability

27 May 2024
O. Kitouni
Niklas Nolte
Víctor Samuel Pérez-Díaz
S. Trifinopoulos
Mike Williams
    MILM
ArXiv (abs)PDFHTML

Papers citing "From Neurons to Neutrons: A Case Study in Interpretability"

10 / 10 papers shown
Title
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Daking Rai
Yilun Zhou
Shi Feng
Abulhair Saparov
Ziyu Yao
160
33
0
02 Jul 2024
The Clock and the Pizza: Two Stories in Mechanistic Explanation of
  Neural Networks
The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks
Ziqian Zhong
Ziming Liu
Max Tegmark
Jacob Andreas
75
102
0
30 Jun 2023
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaMLXAI
204
682
0
28 Dec 2020
Intrinsic Dimensionality Explains the Effectiveness of Language Model
  Fine-Tuning
Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning
Armen Aghajanyan
Luke Zettlemoyer
Sonal Gupta
101
570
1
22 Dec 2020
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCLDRL
108
480
0
05 Dec 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
64
1,356
0
16 Feb 2018
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,316
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,902
0
12 Nov 2013
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
680
31,544
0
16 Jan 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
274
12,458
0
24 Jun 2012
1