Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.16924
Cited By
Demystifying amortized causal discovery with transformers
27 May 2024
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Demystifying amortized causal discovery with transformers"
32 / 32 papers shown
Title
Shortcuts for causal discovery of nonlinear models by score matching
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Francesco Locatello
CML
58
3
0
22 Oct 2023
Assumption violations in causal discovery and the robustness of score matching
Francesco Montagna
Atalanti A. Mastakouri
Elias Eulig
Nicoletta Noceti
Lorenzo Rosasco
Dominik Janzing
Bryon Aragam
Francesco Locatello
OOD
33
17
0
20 Oct 2023
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Riccardo Massidda
Francesco Landolfi
Martina Cinquini
Davide Bacciu
45
6
0
15 Sep 2023
Causal Discovery with Score Matching on Additive Models with Arbitrary Noise
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Kun Zhang
Francesco Locatello
CML
22
27
0
06 Apr 2023
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
78
78
0
16 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Biwei Huang
Kun Zhang
Javen Qinfeng Shi
44
25
0
30 Aug 2022
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
58
60
0
25 May 2022
Score matching enables causal discovery of nonlinear additive noise models
Paul Rolland
Volkan Cevher
Matthäus Kleindessner
Chris Russel
Bernhard Schölkopf
Dominik Janzing
Francesco Locatello
CML
64
85
0
08 Mar 2022
Optimal transport for causal discovery
Ruibo Tu
Kun Zhang
Hedvig Kjellström
Cheng Zhang
107
19
0
23 Jan 2022
ML4C: Seeing Causality Through Latent Vicinity
Haoyue Dai
Rui Ding
Yuanyuan Jiang
Shi Han
Dongmei Zhang
OOD
45
13
0
01 Oct 2021
Typing assumptions improve identification in causal discovery
P. Brouillard
Perouz Taslakian
Alexandre Lacoste
Sébastien Lachapelle
Alexandre Drouin
CML
27
13
0
22 Jul 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
21
73
0
22 Jul 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD
3DPC
51
138
0
04 Jun 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
33
64
0
14 May 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
38
138
0
26 Feb 2021
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
29
184
0
03 Jul 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
66
128
0
18 Jun 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
30
189
0
17 Jun 2020
Supervised Whole DAG Causal Discovery
Hebi Li
Qi Xiao
Jin Tian
CML
29
17
0
08 Jun 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
120
2,023
0
16 Apr 2020
Conditional Independence Testing using Generative Adversarial Networks
Alexis Bellot
M. Schaar
CML
GAN
35
51
0
09 Jul 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
23
270
0
05 Jun 2019
Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
R. Monti
Kun Zhang
Aapo Hyvarinen
CML
27
91
0
19 Apr 2019
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
50
925
0
04 Mar 2018
Model-Powered Conditional Independence Test
Rajat Sen
A. Suresh
Karthikeyan Shanmugam
A. Dimakis
Sanjay Shakkottai
VLM
CML
26
91
0
18 Sep 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
230
129,831
0
12 Jun 2017
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
28
137
0
08 Nov 2014
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
81
323
0
06 Oct 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
57
563
0
26 Sep 2013
Geometry of the faithfulness assumption in causal inference
Caroline Uhler
Garvesh Raskutti
Peter Buhlmann
B. Yu
80
220
0
02 Jul 2012
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
110
558
0
09 May 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
56
503
0
13 Jan 2011
1