ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14199
  4. Cited By
Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse
  Reward Scenarios

Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse Reward Scenarios

23 May 2024
Emma Clark
Kanghyun Ryu
Negar Mehr
ArXivPDFHTML

Papers citing "Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse Reward Scenarios"

4 / 4 papers shown
Title
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
Kanghyun Ryu
Qiayuan Liao
Zhongyu Li
Koushil Sreenath
Negar Mehr
Negar Mehr
LM&Ro
268
3
0
27 Sep 2024
RAT iLQR: A Risk Auto-Tuning Controller to Optimally Account for
  Stochastic Model Mismatch
RAT iLQR: A Risk Auto-Tuning Controller to Optimally Account for Stochastic Model Mismatch
Haruki Nishimura
Negar Mehr
Adrien Gaidon
Mac Schwager
42
13
0
16 Oct 2020
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
189
18,685
0
20 Jul 2017
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic
  Environments
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments
Yi Sun
Faustino J. Gomez
Jürgen Schmidhuber
57
163
0
29 Mar 2011
1