Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.13888
Cited By
Marrying Causal Representation Learning with Dynamical Systems for Science
22 May 2024
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Marrying Causal Representation Learning with Dynamical Systems for Science"
45 / 45 papers shown
Title
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
117
0
0
17 Apr 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
136
1
0
27 Feb 2025
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
60
14
0
13 Mar 2024
Mechanistic Neural Networks for Scientific Machine Learning
Adeel Pervez
Francesco Locatello
E. Gavves
PINN
AI4CE
42
9
0
20 Feb 2024
Nonstationary Time Series Forecasting via Unknown Distribution Adaptation
Zijian Li
Ruichu Cai
Zhenhui Yang
Haiqin Huang
Guan-Hong Chen
Yifan Shen
Zhengming Chen
Xiangchen Song
Kun Zhang
OOD
AI4TS
59
1
0
20 Feb 2024
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
103
8
0
29 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
95
36
0
07 Nov 2023
Temporally Disentangled Representation Learning under Unknown Nonstationarity
Xiangchen Song
Weiran Yao
Yewen Fan
Xinshuai Dong
Guan-Hong Chen
Juan Carlos Niebles
Eric P. Xing
Kun Zhang
CML
OOD
75
12
0
28 Oct 2023
General Identifiability and Achievability for Causal Representation Learning
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
72
21
0
24 Oct 2023
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
Stéphane d’Ascoli
Soren Becker
Alexander Mathis
Philippe Schwaller
Niki Kilbertus
58
23
0
09 Oct 2023
Predicting Ordinary Differential Equations with Transformers
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
65
15
0
24 Jul 2023
Identifiability Guarantees for Causal Disentanglement from Soft Interventions
Jiaqi Zhang
C. Squires
Kristjan Greenewald
Akash Srivastava
Karthikeyan Shanmugam
Caroline Uhler
CML
67
61
0
12 Jul 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
58
28
0
05 Jul 2023
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
68
64
0
04 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
82
63
0
01 Jun 2023
On the Identifiability of Switching Dynamical Systems
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
56
4
0
25 May 2023
Simultaneous identification of models and parameters of scientific simulators
Cornelius Schroder
Jakob H. Macke
65
4
0
24 May 2023
Identifiability Results for Multimodal Contrastive Learning
Imant Daunhawer
Alice Bizeul
Emanuele Palumbo
Alexander Marx
Julia E. Vogt
52
41
0
16 Mar 2023
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
66
20
0
02 Feb 2023
Linear Causal Disentanglement via Interventions
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
52
68
0
29 Nov 2022
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
44
33
0
26 Nov 2022
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
52
51
0
24 Oct 2022
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
65
93
0
24 Sep 2022
Partial Disentanglement via Mechanism Sparsity
Sébastien Lachapelle
Simon Lacoste-Julien
44
25
0
15 Jul 2022
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
67
51
0
20 Jun 2022
On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear Independent Component Analysis
Qi Lyu
Xiao Fu
CML
46
4
0
14 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
30
0
13 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
65
60
0
02 Jun 2022
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
57
126
0
30 Mar 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
55
108
0
07 Feb 2022
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
50
48
0
20 Oct 2021
Discovering Sparse Interpretable Dynamics from Partial Observations
Peter Y. Lu
Joan Ariño Bernad
Marin Soljacic
AI4CE
37
25
0
22 Jul 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
75
138
0
21 Jul 2021
Understanding Latent Correlation-Based Multiview Learning and Self-Supervision: An Identifiability Perspective
Qinjie Lyu
Xiao Fu
Weiran Wang
Songtao Lu
SSL
29
31
0
14 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
76
312
0
08 Jun 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
262
217
0
17 Feb 2021
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
79
132
0
21 Jul 2020
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lio
58
91
0
12 Jun 2020
SINDy-PI: A Robust Algorithm for Parallel Implicit Sparse Identification of Nonlinear Dynamics
Kadierdan Kaheman
J. Nathan Kutz
Steven L. Brunton
36
266
0
05 Apr 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
99
123
0
26 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
217
316
0
07 Feb 2020
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
137
842
0
04 Nov 2019
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
107
1,463
0
29 Nov 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
315
5,076
0
19 Jun 2018
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Philippe Wenk
Alkis Gotovos
Stefan Bauer
Nico S. Gorbach
Andreas Krause
J. M. Buhmann
BDL
20
48
0
12 Apr 2018
1