ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11397
  4. Cited By
Preparing for Black Swans: The Antifragility Imperative for Machine
  Learning

Preparing for Black Swans: The Antifragility Imperative for Machine Learning

18 May 2024
Ming Jin
ArXivPDFHTML

Papers citing "Preparing for Black Swans: The Antifragility Imperative for Machine Learning"

35 / 35 papers shown
Title
Quality-Diversity through AI Feedback
Quality-Diversity through AI Feedback
Herbie Bradley
Andrew M. Dai
H. Teufel
Jenny Zhang
Koen Oostermeijer
Marco Bellagente
Jeff Clune
Kenneth O. Stanley
Grégory Schott
Joel Lehman
17
26
0
19 Oct 2023
Safe Exploration in Reinforcement Learning: A Generalized Formulation
  and Algorithms
Safe Exploration in Reinforcement Learning: A Generalized Formulation and Algorithms
Akifumi Wachi
Wataru Hashimoto
Xun Shen
Kazumune Hashimoto
53
10
0
05 Oct 2023
Retrieving Multimodal Information for Augmented Generation: A Survey
Retrieving Multimodal Information for Augmented Generation: A Survey
Ruochen Zhao
Hailin Chen
Weishi Wang
Fangkai Jiao
Do Xuan Long
...
Bosheng Ding
Xiaobao Guo
Minzhi Li
Xingxuan Li
Shafiq Joty
72
85
0
20 Mar 2023
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
49
20
0
31 Jan 2023
Pareto Manifold Learning: Tackling multiple tasks via ensembles of
  single-task models
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
Nikolaos Dimitriadis
P. Frossard
Franccois Fleuret
55
25
0
18 Oct 2022
A Generalist Agent
A Generalist Agent
Scott E. Reed
Konrad Zolna
Emilio Parisotto
Sergio Gomez Colmenarejo
Alexander Novikov
...
Yutian Chen
R. Hadsell
Oriol Vinyals
Mahyar Bordbar
Nando de Freitas
LM&Ro
LLMAG
AI4CE
167
801
0
12 May 2022
Factored Adaptation for Non-Stationary Reinforcement Learning
Factored Adaptation for Non-Stationary Reinforcement Learning
Fan Feng
Erdun Gao
Kun Zhang
Sara Magliacane
CML
OffRL
100
32
0
30 Mar 2022
Tight Concentrations and Confidence Sequences from the Regret of
  Universal Portfolio
Tight Concentrations and Confidence Sequences from the Regret of Universal Portfolio
Francesco Orabona
Kwang-Sung Jun
82
41
0
27 Oct 2021
Unsolved Problems in ML Safety
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
221
282
0
28 Sep 2021
Safe Learning in Robotics: From Learning-Based Control to Safe
  Reinforcement Learning
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning
Lukas Brunke
Melissa Greeff
Adam W. Hall
Zhaocong Yuan
Siqi Zhou
Jacopo Panerati
Angela P. Schoellig
OffRL
48
610
0
13 Aug 2021
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning
Erdun Gao
Fan Feng
Chaochao Lu
Sara Magliacane
Kun Zhang
76
66
0
06 Jul 2021
RL for Latent MDPs: Regret Guarantees and a Lower Bound
RL for Latent MDPs: Regret Guarantees and a Lower Bound
Jeongyeol Kwon
Yonathan Efroni
Constantine Caramanis
Shie Mannor
44
78
0
09 Feb 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
146
1,418
0
14 Dec 2020
Learning to be Safe: Deep RL with a Safety Critic
Learning to be Safe: Deep RL with a Safety Critic
K. Srinivasan
Benjamin Eysenbach
Sehoon Ha
Jie Tan
Chelsea Finn
OffRL
58
143
0
27 Oct 2020
Conservative Safety Critics for Exploration
Conservative Safety Critics for Exploration
Homanga Bharadhwaj
Aviral Kumar
Nicholas Rhinehart
Sergey Levine
Florian Shkurti
Animesh Garg
OffRL
74
139
0
27 Oct 2020
Learning the Pareto Front with Hypernetworks
Learning the Pareto Front with Hypernetworks
Aviv Navon
Aviv Shamsian
Gal Chechik
Ethan Fetaya
99
142
0
08 Oct 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
257
1,715
0
29 Jun 2020
Optimizing for the Future in Non-Stationary MDPs
Optimizing for the Future in Non-Stationary MDPs
Yash Chandak
Georgios Theocharous
Shiv Shankar
Martha White
Sridhar Mahadevan
Philip S. Thomas
OffRL
35
65
0
17 May 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
300
1,950
0
11 Apr 2020
Gradient Surgery for Multi-Task Learning
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
114
1,190
0
19 Jan 2020
Single Episode Policy Transfer in Reinforcement Learning
Single Episode Policy Transfer in Reinforcement Learning
Jiachen Yang
Brenden K. Petersen
H. Zha
Daniel Faissol
OOD
OffRL
108
33
0
17 Oct 2019
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
90
1,922
0
07 Sep 2019
A Generalized Algorithm for Multi-Objective Reinforcement Learning and
  Policy Adaptation
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation
Runzhe Yang
Xingyuan Sun
Karthik Narasimhan
56
252
0
21 Aug 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
109
3,399
0
28 Mar 2019
Provably efficient RL with Rich Observations via Latent State Decoding
Provably efficient RL with Rich Observations via Latent State Decoding
S. Du
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
Miroslav Dudík
John Langford
OffRL
45
230
0
25 Jan 2019
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
79
226
0
13 Feb 2018
Online Learning: A Comprehensive Survey
Online Learning: A Comprehensive Survey
Guosheng Lin
Doyen Sahoo
Jing Lu
P. Zhao
OffRL
53
638
0
08 Feb 2018
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
73
974
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
67
1,011
0
09 Nov 2016
Matrix Completion has No Spurious Local Minimum
Matrix Completion has No Spurious Local Minimum
Rong Ge
Jason D. Lee
Tengyu Ma
53
597
0
24 May 2016
On Equivalence of Martingale Tail Bounds and Deterministic Regret
  Inequalities
On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities
Alexander Rakhlin
Karthik Sridharan
43
48
0
13 Oct 2015
Non-stationary Stochastic Optimization
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
111
430
0
20 Jul 2013
Online Learning with Predictable Sequences
Online Learning with Predictable Sequences
Alexander Rakhlin
Karthik Sridharan
112
355
0
18 Aug 2012
Predictive State Representations: A New Theory for Modeling Dynamical
  Systems
Predictive State Representations: A New Theory for Modeling Dynamical Systems
Satinder Singh
Michael R. James
Matthew R. Rudary
AI4TS
AI4CE
63
288
0
11 Jul 2012
On the Computational Complexity of Stochastic Controller Optimization in
  POMDPs
On the Computational Complexity of Stochastic Controller Optimization in POMDPs
N. Vlassis
Michael L. Littman
David Barber
68
84
0
15 Jul 2011
1