Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.08558
Cited By
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
14 May 2024
Simone Brivio
S. Fresca
Andrea Manzoni
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs"
30 / 30 papers shown
Title
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
36
20
0
05 Jan 2024
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F. Pichi
B. Moya
J. Hesthaven
AI4CE
52
53
0
15 May 2023
Reliable extrapolation of deep neural operators informed by physics or sparse observations
Min Zhu
Handi Zhang
Anran Jiao
George Karniadakis
Lu Lu
78
94
0
13 Dec 2022
FastSVD-ML-ROM
\textit{FastSVD-ML-ROM}
FastSVD-ML-ROM
: A Reduced-Order Modeling Framework based on Machine Learning for Real-Time Applications
G. Drakoulas
T. Gortsas
G. Bourantas
V. Burganos
D. Polyzos
AI4CE
25
16
0
24 Jul 2022
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
57
47
0
05 Jul 2022
Loss Landscape Engineering via Data Regulation on PINNs
Vignesh Gopakumar
Stanislas Pamela
D. Samaddar
PINN
51
17
0
16 May 2022
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
75
17
0
25 Mar 2022
Physics-Informed Neural Networks with Adaptive Localized Artificial Viscosity
E. Coutinho
M. DallÁqua
L. McClenny
M. Zhong
U. Braga-Neto
Eduardo Gildin
10
40
0
15 Mar 2022
Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models
Federico Fatone
S. Fresca
Andrea Manzoni
AI4TS
40
16
0
25 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
50
22
0
14 Dec 2021
Improved architectures and training algorithms for deep operator networks
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
69
105
0
04 Oct 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
78
626
0
02 Sep 2021
Deep Learning for Reduced Order Modelling and Efficient Temporal Evolution of Fluid Simulations
Pranshu Pant
Ruchi Doshi
Pranav Bahl
A. Farimani
AI4CE
25
80
0
09 Jul 2021
Real-time simulation of parameter-dependent fluid flows through deep learning-based reduced order models
S. Fresca
Andrea Manzoni
AI4CE
40
36
0
10 Jun 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
65
685
0
19 Mar 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
55
45
0
10 Mar 2021
POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
S. Fresca
Andrea Manzoni
AI4CE
40
213
0
28 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
400
2,355
0
18 Oct 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
96
890
0
28 Jul 2020
Deep learning of thermodynamics-aware reduced-order models from data
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
AI4CE
22
79
0
03 Jul 2020
Model Reduction and Neural Networks for Parametric PDEs
K. Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
135
323
0
07 May 2020
Structure-preserving neural networks
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
98
70
0
09 Apr 2020
A Close Look at Deep Learning with Small Data
Lorenzo Brigato
Luca Iocchi
102
140
0
28 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
208
768
0
13 Mar 2020
A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
S. Fresca
Luca Dede'
Andrea Manzoni
AI4CE
35
259
0
12 Jan 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
142
2,082
0
08 Oct 2019
Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
F. J. Gonzalez
Maciej Balajewicz
AI4CE
98
139
0
03 Aug 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
218
5,024
0
19 Jun 2018
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
122
2,775
0
20 Feb 2015
An implementation of a randomized algorithm for principal component analysis
Arthur Szlam
Y. Kluger
M. Tygert
36
43
0
11 Dec 2014
1