ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.3510
38
43

An implementation of a randomized algorithm for principal component analysis

11 December 2014
Arthur Szlam
Y. Kluger
M. Tygert
ArXivPDFHTML
Abstract

Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis (PCA) and the calculation of truncated singular value decompositions (SVD). The present paper presents an essentially black-box, fool-proof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical techniques (such as Lanczos iterations) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms, and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).

View on arXiv
Comments on this paper