ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.08448
  4. Cited By
Understanding the performance gap between online and offline alignment
  algorithms

Understanding the performance gap between online and offline alignment algorithms

14 May 2024
Yunhao Tang
Daniel Guo
Zeyu Zheng
Daniele Calandriello
Yuan Cao
Eugene Tarassov
Rémi Munos
Bernardo Avila-Pires
Michal Valko
Yong Cheng
Will Dabney
    OffRL
    OnRL
ArXivPDFHTML

Papers citing "Understanding the performance gap between online and offline alignment algorithms"

44 / 44 papers shown
Title
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Ahsan Bilal
Beiyu Lin
OffRL
RALM
AI4MH
85
1
0
02 Apr 2025
Reasoning Beyond Limits: Advances and Open Problems for LLMs
Reasoning Beyond Limits: Advances and Open Problems for LLMs
M. Ferrag
Norbert Tihanyi
Merouane Debbah
ELM
OffRL
LRM
AI4CE
309
3
0
26 Mar 2025
The Best Instruction-Tuning Data are Those That Fit
The Best Instruction-Tuning Data are Those That Fit
Dylan Zhang
Qirun Dai
Hao Peng
ALM
150
6
0
06 Feb 2025
Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning
Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning
Hao Sun
M. Schaar
109
17
0
28 Jan 2025
Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Yannis Flet-Berliac
Nathan Grinsztajn
Florian Strub
Bill Wu
Eugene Choi
...
Arash Ahmadian
Yash Chandak
M. G. Azar
Olivier Pietquin
Matthieu Geist
OffRL
122
7
0
17 Jan 2025
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
Michael Noukhovitch
Shengyi Huang
Sophie Xhonneux
Arian Hosseini
Rishabh Agarwal
Rameswar Panda
OffRL
100
8
0
23 Oct 2024
Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment
Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment
Mingzhi Wang
Chengdong Ma
Qizhi Chen
Linjian Meng
Yang Han
Jiancong Xiao
Zhaowei Zhang
Jing Huo
Weijie Su
Yaodong Yang
104
7
0
22 Oct 2024
MACPO: Weak-to-Strong Alignment via Multi-Agent Contrastive Preference Optimization
MACPO: Weak-to-Strong Alignment via Multi-Agent Contrastive Preference Optimization
Yougang Lyu
Lingyong Yan
Zihan Wang
Dawei Yin
Pengjie Ren
Maarten de Rijke
Zhaochun Ren
86
8
0
10 Oct 2024
MA-RLHF: Reinforcement Learning from Human Feedback with Macro Actions
MA-RLHF: Reinforcement Learning from Human Feedback with Macro Actions
Yekun Chai
Haoran Sun
Huang Fang
Shuohuan Wang
Yu Sun
Hua Wu
375
1
0
03 Oct 2024
Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning
Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning
Yuheng Zhang
Dian Yu
Baolin Peng
Linfeng Song
Ye Tian
Mingyue Huo
Nan Jiang
Haitao Mi
Dong Yu
113
16
0
30 Jun 2024
3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
Yuzi Yan
Yibo Miao
J. Li
Yipin Zhang
Jian Xie
Zhijie Deng
Dong Yan
71
12
0
11 Jun 2024
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy
  Data
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
Fahim Tajwar
Anika Singh
Archit Sharma
Rafael Rafailov
Jeff Schneider
Tengyang Xie
Stefano Ermon
Chelsea Finn
Aviral Kumar
64
114
0
22 Apr 2024
Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
Shusheng Xu
Wei Fu
Jiaxuan Gao
Wenjie Ye
Weiling Liu
Zhiyu Mei
Guangju Wang
Chao Yu
Yi Wu
84
149
0
16 Apr 2024
Human Alignment of Large Language Models through Online Preference
  Optimisation
Human Alignment of Large Language Models through Online Preference Optimisation
Daniele Calandriello
Daniel Guo
Rémi Munos
Mark Rowland
Yunhao Tang
...
Michal Valko
Tianqi Liu
Rishabh Joshi
Zeyu Zheng
Bilal Piot
61
64
0
13 Mar 2024
Gemma: Open Models Based on Gemini Research and Technology
Gemma: Open Models Based on Gemini Research and Technology
Gemma Team
Gemma Team Thomas Mesnard
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
...
Armand Joulin
Noah Fiedel
Evan Senter
Alek Andreev
Kathleen Kenealy
VLM
LLMAG
165
460
0
13 Mar 2024
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
Wei-Lin Chiang
Lianmin Zheng
Ying Sheng
Anastasios Nikolas Angelopoulos
Tianle Li
...
Hao Zhang
Banghua Zhu
Michael I. Jordan
Joseph E. Gonzalez
Ion Stoica
OSLM
94
536
0
07 Mar 2024
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Arka Pal
Deep Karkhanis
Samuel Dooley
Manley Roberts
Siddartha Naidu
Colin White
OSLM
58
135
0
20 Feb 2024
Generalized Preference Optimization: A Unified Approach to Offline
  Alignment
Generalized Preference Optimization: A Unified Approach to Offline Alignment
Yunhao Tang
Z. Guo
Zeyu Zheng
Daniele Calandriello
Rémi Munos
Mark Rowland
Pierre Harvey Richemond
Michal Valko
Bernardo Avila-Pires
Bilal Piot
39
100
0
08 Feb 2024
KTO: Model Alignment as Prospect Theoretic Optimization
KTO: Model Alignment as Prospect Theoretic Optimization
Kawin Ethayarajh
Winnie Xu
Niklas Muennighoff
Dan Jurafsky
Douwe Kiela
199
510
0
02 Feb 2024
Beyond Human Data: Scaling Self-Training for Problem-Solving with
  Language Models
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
Avi Singh
John D. Co-Reyes
Rishabh Agarwal
Ankesh Anand
Piyush Patil
...
Yamini Bansal
Ethan Dyer
Behnam Neyshabur
Jascha Narain Sohl-Dickstein
Noah Fiedel
ALM
LRM
ReLM
SyDa
175
171
0
11 Dec 2023
Nash Learning from Human Feedback
Nash Learning from Human Feedback
Rémi Munos
Michal Valko
Daniele Calandriello
M. G. Azar
Mark Rowland
...
Nikola Momchev
Olivier Bachem
D. Mankowitz
Doina Precup
Bilal Piot
74
137
0
01 Dec 2023
Zephyr: Direct Distillation of LM Alignment
Zephyr: Direct Distillation of LM Alignment
Lewis Tunstall
E. Beeching
Nathan Lambert
Nazneen Rajani
Kashif Rasul
...
Nathan Habib
Nathan Sarrazin
Omar Sanseviero
Alexander M. Rush
Thomas Wolf
ALM
64
382
0
25 Oct 2023
A General Theoretical Paradigm to Understand Learning from Human
  Preferences
A General Theoretical Paradigm to Understand Learning from Human Preferences
M. G. Azar
Mark Rowland
Bilal Piot
Daniel Guo
Daniele Calandriello
Michal Valko
Rémi Munos
112
597
0
18 Oct 2023
Mistral 7B
Mistral 7B
Albert Q. Jiang
Alexandre Sablayrolles
A. Mensch
Chris Bamford
Devendra Singh Chaplot
...
Teven Le Scao
Thibaut Lavril
Thomas Wang
Timothée Lacroix
William El Sayed
MoE
LRM
38
2,102
0
10 Oct 2023
Qwen Technical Report
Qwen Technical Report
Jinze Bai
Shuai Bai
Yunfei Chu
Zeyu Cui
Kai Dang
...
Zhenru Zhang
Chang Zhou
Jingren Zhou
Xiaohuan Zhou
Tianhang Zhu
OSLM
157
1,756
0
28 Sep 2023
Reinforced Self-Training (ReST) for Language Modeling
Reinforced Self-Training (ReST) for Language Modeling
Çağlar Gülçehre
T. Paine
S. Srinivasan
Ksenia Konyushkova
L. Weerts
...
Chenjie Gu
Wolfgang Macherey
Arnaud Doucet
Orhan Firat
Nando de Freitas
OffRL
98
293
0
17 Aug 2023
Direct Preference Optimization: Your Language Model is Secretly a Reward
  Model
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
Rafael Rafailov
Archit Sharma
E. Mitchell
Stefano Ermon
Christopher D. Manning
Chelsea Finn
ALM
282
3,712
0
29 May 2023
SLiC-HF: Sequence Likelihood Calibration with Human Feedback
SLiC-HF: Sequence Likelihood Calibration with Human Feedback
Yao-Min Zhao
Rishabh Joshi
Tianqi Liu
Misha Khalman
Mohammad Saleh
Peter J. Liu
52
284
0
17 May 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAG
MLLM
647
13,788
0
15 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALM
PILM
815
12,840
0
27 Feb 2023
Constitutional AI: Harmlessness from AI Feedback
Constitutional AI: Harmlessness from AI Feedback
Yuntao Bai
Saurav Kadavath
Sandipan Kundu
Amanda Askell
John Kernion
...
Dario Amodei
Nicholas Joseph
Sam McCandlish
Tom B. Brown
Jared Kaplan
SyDa
MoMe
152
1,583
0
15 Dec 2022
Scaling Laws for Reward Model Overoptimization
Scaling Laws for Reward Model Overoptimization
Leo Gao
John Schulman
Jacob Hilton
ALM
61
516
0
19 Oct 2022
Emergent Abilities of Large Language Models
Emergent Abilities of Large Language Models
Jason W. Wei
Yi Tay
Rishi Bommasani
Colin Raffel
Barret Zoph
...
Tatsunori Hashimoto
Oriol Vinyals
Percy Liang
J. Dean
W. Fedus
ELM
ReLM
LRM
170
2,428
0
15 Jun 2022
Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
Scaling Up Models and Data with t5x\texttt{t5x}t5x and seqio\texttt{seqio}seqio
Adam Roberts
Hyung Won Chung
Anselm Levskaya
Gaurav Mishra
James Bradbury
...
Brennan Saeta
Ryan Sepassi
A. Spiridonov
Joshua Newlan
Andrea Gesmundo
ALM
74
196
0
31 Mar 2022
STaR: Bootstrapping Reasoning With Reasoning
STaR: Bootstrapping Reasoning With Reasoning
E. Zelikman
Yuhuai Wu
Jesse Mu
Noah D. Goodman
ReLM
LRM
81
468
0
28 Mar 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
694
12,525
0
04 Mar 2022
The Difficulty of Passive Learning in Deep Reinforcement Learning
The Difficulty of Passive Learning in Deep Reinforcement Learning
Georg Ostrovski
Pablo Samuel Castro
Will Dabney
OffRL
57
57
0
26 Oct 2021
Learning to summarize from human feedback
Learning to summarize from human feedback
Nisan Stiennon
Long Ouyang
Jeff Wu
Daniel M. Ziegler
Ryan J. Lowe
Chelsea Voss
Alec Radford
Dario Amodei
Paul Christiano
ALM
180
2,071
0
02 Sep 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
477
1,994
0
04 May 2020
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
270
19,824
0
23 Oct 2019
Off-Policy Deep Reinforcement Learning without Exploration
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRL
BDL
157
1,586
0
07 Dec 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
236
18,685
0
20 Jul 2017
Deep reinforcement learning from human preferences
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
96
3,243
0
12 Jun 2017
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
147
2,371
0
21 Jun 2016
1