Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.14006
Cited By
Distilled Datamodel with Reverse Gradient Matching
22 April 2024
Jingwen Ye
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distilled Datamodel with Reverse Gradient Matching"
40 / 40 papers shown
Title
Diffusion Model as Representation Learner
Xingyi Yang
Xinchao Wang
DiffM
53
56
0
21 Aug 2023
Partial Network Cloning
Jingwen Ye
Songhua Liu
Xinchao Wang
CLL
61
14
0
19 Mar 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
67
125
0
17 Jan 2023
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
180
143
0
30 Oct 2022
If Influence Functions are the Answer, Then What is the Question?
Juhan Bae
Nathan Ng
Alston Lo
Marzyeh Ghassemi
Roger C. Grosse
TDI
50
93
0
12 Sep 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
65
155
0
01 Jun 2022
Privacy for Free: How does Dataset Condensation Help Privacy?
Tian Dong
Bo Zhao
Lingjuan Lyu
DD
54
115
0
01 Jun 2022
Dataset Condensation with Contrastive Signals
Saehyung Lee
Sanghyuk Chun
Sangwon Jung
Sangdoo Yun
Sung-Hoon Yoon
DD
39
98
0
07 Feb 2022
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
Aleksander Madry
TDI
103
136
0
01 Feb 2022
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
69
96
0
06 Dec 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
53
3
0
24 Nov 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
79
233
0
27 Jul 2021
DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Networks
Yingzhe He
Guozhu Meng
Kai Chen
Jinwen He
Xingbo Hu
MU
28
27
0
13 May 2021
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari
Jayadev Acharya
Gautam Kamath
A. Suresh
FedML
MU
61
293
0
04 Mar 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
329
4,873
0
24 Feb 2021
Dataset Condensation with Differentiable Siamese Augmentation
Bo Zhao
Hakan Bilen
DD
247
300
0
16 Feb 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Joey Tianyi Zhou
Caiming Xiong
TDI
73
107
0
31 Dec 2020
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
46
124
0
24 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
425
40,217
0
22 Oct 2020
Machine Unlearning for Random Forests
Jonathan Brophy
Daniel Lowd
MU
43
159
0
11 Sep 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
107
489
0
10 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
529
41,106
0
28 May 2020
Estimating Training Data Influence by Tracing Gradient Descent
G. Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
TDI
56
395
0
19 Feb 2020
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
103
830
0
09 Dec 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
102
135
0
06 Oct 2019
Making AI Forget You: Data Deletion in Machine Learning
Antonio A. Ginart
M. Guan
Gregory Valiant
James Zou
MU
60
467
0
11 Jul 2019
Generalized Linear Rule Models
Dennis L. Wei
S. Dash
Tian Gao
Oktay Gunluk
31
63
0
05 Jun 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.1K
93,936
0
11 Oct 2018
Explanations of model predictions with live and breakDown packages
M. Staniak
P. Biecek
FAtt
13
117
0
05 Apr 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
170
1,828
0
30 Nov 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
651
21,613
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
142
2,854
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
142
5,920
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
225
19,796
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
681
16,828
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
186
9,280
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.5K
192,638
0
10 Dec 2015
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Berk Ustun
Cynthia Rudin
71
352
0
15 Feb 2015
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.2K
39,383
0
01 Sep 2014
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
376
15,825
0
12 Nov 2013
1