ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13604
  4. Cited By
CKGConv: General Graph Convolution with Continuous Kernels

CKGConv: General Graph Convolution with Continuous Kernels

21 April 2024
Liheng Ma
Soumyasundar Pal
Yitian Zhang
Jiaming Zhou
Yingxue Zhang
Mark Coates
ArXivPDFHTML

Papers citing "CKGConv: General Graph Convolution with Continuous Kernels"

32 / 32 papers shown
Title
Pure Transformers are Powerful Graph Learners
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
60
195
0
06 Jul 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
39
63
0
15 Jun 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
97
549
0
25 May 2022
Rewiring with Positional Encodings for Graph Neural Networks
Rewiring with Positional Encodings for Graph Neural Networks
Rickard Brüel-Gabrielsson
Mikhail Yurochkin
Justin Solomon
AI4CE
49
33
0
29 Jan 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
75
437
0
29 Nov 2021
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
164
1,783
0
18 Nov 2021
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein
  Approximation
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
Mingguo He
Zhewei Wei
Zengfeng Huang
Hongteng Xu
59
223
0
21 Jun 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
78
261
0
21 Jun 2021
GraphiT: Encoding Graph Structure in Transformers
GraphiT: Encoding Graph Structure in Transformers
Grégoire Mialon
Dexiong Chen
Margot Selosse
Julien Mairal
68
167
0
10 Jun 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
52
525
0
07 Jun 2021
ResMLP: Feedforward networks for image classification with
  data-efficient training
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
49
657
0
07 May 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
371
2,638
0
04 May 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
402
3,660
0
24 Feb 2021
CKConv: Continuous Kernel Convolution For Sequential Data
CKConv: Continuous Kernel Convolution For Sequential Data
David W. Romero
Anna Kuzina
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
40
125
0
04 Feb 2021
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
77
2,516
0
17 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
78
428
0
16 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
65
675
0
09 Jun 2020
SIGN: Scalable Inception Graph Neural Networks
SIGN: Scalable Inception Graph Neural Networks
Fabrizio Frasca
Emanuele Rossi
D. Eynard
B. Chamberlain
M. Bronstein
Federico Monti
GNN
55
394
0
23 Apr 2020
On Universal Equivariant Set Networks
On Universal Equivariant Set Networks
Nimrod Segol
Y. Lipman
3DPC
46
63
0
06 Oct 2019
Position-aware Graph Neural Networks
Position-aware Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
64
492
0
11 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
38
17,950
0
28 May 2019
PointConv: Deep Convolutional Networks on 3D Point Clouds
PointConv: Deep Convolutional Networks on 3D Point Clouds
Wenxuan Wu
Zhongang Qi
Fuxin Li
3DPC
98
1,552
0
17 Nov 2018
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
163
1,674
0
14 Oct 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
114
1,625
0
04 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
115
7,554
0
01 Oct 2018
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point
  Clouds
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds
Pedro Hermosilla
Tobias Ritschel
Pere-Pau Vázquez
À. Vinacua
Timo Ropinski
3DPC
70
260
0
05 Jun 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV
3DPC
196
769
0
30 Mar 2018
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
190
8,030
0
13 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
187
10,412
0
21 Jul 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
205
7,622
0
30 Jun 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
240
10,149
0
16 Mar 2016
Spectral Networks and Locally Connected Networks on Graphs
Spectral Networks and Locally Connected Networks on Graphs
Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
GNN
87
4,856
0
21 Dec 2013
1