ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.11015
  4. Cited By
FedFa: A Fully Asynchronous Training Paradigm for Federated Learning

FedFa: A Fully Asynchronous Training Paradigm for Federated Learning

17 April 2024
Haotian Xu
Zhaorui Zhang
Sheng Di
Benben Liu
Khalid Ayedh Alharthi
Jiannong Cao
    FedML
ArXivPDFHTML

Papers citing "FedFa: A Fully Asynchronous Training Paradigm for Federated Learning"

10 / 10 papers shown
Title
Corrected with the Latest Version: Make Robust Asynchronous Federated Learning Possible
Corrected with the Latest Version: Make Robust Asynchronous Federated Learning Possible
Chaoyi Lu
Yiding Sun
Pengbo Li
Zhichuan Yang
FedML
98
1
0
05 Apr 2025
Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
Prajjwal Bhargava
Aleksandr Drozd
Anna Rogers
134
105
0
04 Oct 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
156
254
0
09 Sep 2021
LoRA: Low-Rank Adaptation of Large Language Models
LoRA: Low-Rank Adaptation of Large Language Models
J. E. Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Lu Wang
Weizhu Chen
OffRL
AI4TS
AI4CE
ALM
AIMat
466
10,367
0
17 Jun 2021
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
63
1,337
0
15 Jul 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
256
6,261
0
10 Dec 2019
Measuring the Effects of Non-Identical Data Distribution for Federated
  Visual Classification
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
143
1,150
0
13 Sep 2019
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
147
1,421
0
03 Dec 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
176
1,063
0
24 May 2018
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
1