Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.05185
Cited By
v1
v2
v3 (latest)
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
8 April 2024
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size"
23 / 23 papers shown
Title
Deep Learning for Mean Field Optimal Transport
Sebastian Baudelet
Brieuc Frénais
Mathieu Laurière
Amal Machtalay
Yuchen Zhu
OT
55
2
0
28 Feb 2023
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Fan Chen
Zhenjie Ren
Song-bo Wang
89
31
0
06 Dec 2022
Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance
René Carmona
Mathieu Laurière
AI4CE
66
28
0
09 Jul 2021
Scaling Properties of Deep Residual Networks
A. Cohen
R. Cont
Alain Rossier
Renyuan Xu
51
19
0
25 May 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
171
118
0
28 Feb 2021
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
82
120
0
25 Oct 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
78
108
0
22 Dec 2019
Mean-Field Neural ODEs via Relaxed Optimal Control
Jean-François Jabir
D. vSivska
Lukasz Szpruch
MLT
96
38
0
11 Dec 2019
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
122
220
0
04 Dec 2019
On the Convergence of Model Free Learning in Mean Field Games
Romuald Elie
Julien Pérolat
Mathieu Laurière
Matthieu Geist
Olivier Pietquin
80
92
0
04 Jul 2019
Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications
Achref Bachouch
Côme Huré
N. Langrené
H. Pham
89
87
0
13 Dec 2018
Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis
Côme Huré
H. Pham
Achref Bachouch
N. Langrené
55
67
0
11 Dec 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
65
132
0
15 Oct 2018
A Mean-Field Optimal Control Formulation of Deep Learning
Weinan E
Jiequn Han
Qianxiao Li
OOD
108
187
0
03 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
443
5,168
0
19 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
214
737
0
24 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
105
862
0
18 Apr 2018
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li
Long Chen
Cheng Tai
E. Weinan
103
224
0
26 Oct 2017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
125
797
0
15 Jun 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
152
733
0
09 May 2017
EM Algorithm and Stochastic Control in Economics
S. Kou
X. Peng
Xingbo Xu
42
5
0
06 Nov 2016
Deep Learning Approximation for Stochastic Control Problems
Jiequn Han
E. Weinan
BDL
61
197
0
02 Nov 2016
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
467
43,347
0
11 Feb 2015
1