ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.17993
  4. Cited By
Mixing Artificial and Natural Intelligence: From Statistical Mechanics
  to AI and Back to Turbulence

Mixing Artificial and Natural Intelligence: From Statistical Mechanics to AI and Back to Turbulence

26 March 2024
Michael Chertkov
    AI4CE
ArXivPDFHTML

Papers citing "Mixing Artificial and Natural Intelligence: From Statistical Mechanics to AI and Back to Turbulence"

27 / 27 papers shown
Title
A non-intrusive machine learning framework for debiasing long-time
  coarse resolution climate simulations and quantifying rare events statistics
A non-intrusive machine learning framework for debiasing long-time coarse resolution climate simulations and quantifying rare events statistics
Benedikt Barthel Sorensen
A. Charalampopoulos
Shixuan Zhang
B. Harrop
Ruby Leung
T. Sapsis
AI4Cl
26
10
0
28 Feb 2024
A mathematical perspective on Transformers
A mathematical perspective on Transformers
Borjan Geshkovski
Cyril Letrouit
Yury Polyanskiy
Philippe Rigollet
EDL
AI4CE
69
41
0
17 Dec 2023
Extreme Event Prediction with Multi-agent Reinforcement Learning-based
  Parametrization of Atmospheric and Oceanic Turbulence
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
R. Mojgani
Daniel Waelchli
Yifei Guan
Petros Koumoutsakos
Pedram Hassanzadeh
AI4Cl
AI4CE
61
5
0
01 Dec 2023
Dissecting Arbitrary-scale Super-resolution Capability from Pre-trained
  Diffusion Generative Models
Dissecting Arbitrary-scale Super-resolution Capability from Pre-trained Diffusion Generative Models
Ruibin Li
Qihua Zhou
Song Guo
Jiewei Zhang
Jingcai Guo
Xinyang Jiang
Yifei Shen
Zhen-Hai Han
DiffM
42
15
0
01 Jun 2023
The emergence of clusters in self-attention dynamics
The emergence of clusters in self-attention dynamics
Borjan Geshkovski
Cyril Letrouit
Yury Polyanskiy
Philippe Rigollet
53
52
0
09 May 2023
$β$-Variational autoencoders and transformers for reduced-order
  modelling of fluid flows
βββ-Variational autoencoders and transformers for reduced-order modelling of fluid flows
Alberto Solera-Rico
Carlos Sanmiguel Vila
Miguel Gómez-López
Yuning Wang
Abdulrahman Almashjary
Scott T. M. Dawson
Ricardo Vinuesa
DRL
44
83
0
07 Apr 2023
Adaptive learning of effective dynamics: Adaptive real-time, online
  modeling for complex systems
Adaptive learning of effective dynamics: Adaptive real-time, online modeling for complex systems
Ivica Kicic
Pantelis R. Vlachas
G. Arampatzis
Michail Chatzimanolakis
Leonidas Guibas
Petros Koumoutsakos
AI4CE
43
6
0
04 Apr 2023
A Physics-Informed Machine Learning for Electricity Markets: A NYISO
  Case Study
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
Robert Ferrando
Laurent Pagnier
R. Mieth
Zhirui Liang
Y. Dvorkin
D. Bienstock
Michael Chertkov
38
7
0
31 Mar 2023
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLM
DiffM
339
6,830
0
13 Apr 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
229
30,089
0
01 Mar 2022
Simulation Intelligence: Towards a New Generation of Scientific Methods
Simulation Intelligence: Towards a New Generation of Scientific Methods
Alexander Lavin
D. Krakauer
Hector Zenil
Justin Emile Gottschlich
Tim Mattson
...
A. Hanuka
Manuela Veloso
Samuel A. Assefa
Stephan Zheng
Avi Pfeffer
98
110
0
06 Dec 2021
Physics informed machine learning with Smoothed Particle Hydrodynamics:
  Hierarchy of reduced Lagrangian models of turbulence
Physics informed machine learning with Smoothed Particle Hydrodynamics: Hierarchy of reduced Lagrangian models of turbulence
M. Woodward
Yifeng Tian
Criston Hyett
Chris L. Fryer
Daniel Livescu
Mikhail Stepanov
Michael Chertkov
AI4CE
34
8
0
25 Oct 2021
Reinforcement learning for pursuit and evasion of microswimmers at low
  Reynolds number
Reinforcement learning for pursuit and evasion of microswimmers at low Reynolds number
Francesco Borra
Luca Biferale
M. Cencini
A. Celani
72
21
0
16 Jun 2021
Learning Efficient Navigation in Vortical Flow Fields
Learning Efficient Navigation in Vortical Flow Fields
Peter Gunnarson
Ioannis Mandralis
G. Novati
Petros Koumoutsakos
J. Dabiri
67
70
0
21 Feb 2021
Physics-Informed Graphical Neural Network for Parameter & State
  Estimations in Power Systems
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems
Laurent Pagnier
Michael Chertkov
68
50
0
12 Feb 2021
Neural Particle Image Velocimetry
Neural Particle Image Velocimetry
N. Stulov
Michael Chertkov
36
7
0
28 Jan 2021
A reinforcement learning approach to rare trajectory sampling
A reinforcement learning approach to rare trajectory sampling
Dominic C. Rose
Jamie F. Mair
J. P. Garrahan
53
51
0
26 May 2020
Machine learning strategies for path-planning microswimmers in turbulent
  flows
Machine learning strategies for path-planning microswimmers in turbulent flows
Jaya Kumar Alageshan
A. Verma
Jin Tang
Bin Luo
47
50
0
03 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
213
3,870
0
12 Jul 2019
Theoretical guarantees for sampling and inference in generative models
  with latent diffusions
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
59
101
0
05 Mar 2019
Learning a Generator Model from Terminal Bus Data
Learning a Generator Model from Terminal Bus Data
N. Stulov
D. Sobajic
Yury Maximov
Deepjyoti Deka
Michael Chertkov
45
4
0
03 Jan 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
341
5,081
0
19 Jun 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
67
1,245
0
27 Dec 2017
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
70
612
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
75
922
0
28 Nov 2017
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
255
6,887
0
12 Mar 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
1