ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13728
  4. Cited By
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling

M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling

20 March 2024
Xudong Sun
Nutan Chen
Alexej Gossmann
Yu Xing
Carla Feistner
Emilio Dorigatt
Felix Drost
Daniele Scarcella
Lisa Beer
Carsten Marr
Carsten Marr
ArXivPDFHTML

Papers citing "M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling"

29 / 29 papers shown
Title
Sequential Model for Predicting Patient Adherence in Subcutaneous
  Immunotherapy for Allergic Rhinitis
Sequential Model for Predicting Patient Adherence in Subcutaneous Immunotherapy for Allergic Rhinitis
Yin Li
Yu Xiong
Wenxin Fan
Kai Wang
Qingqing Yu
Liping Si
Patrick van der Smagt
Jun Tang
Nutan Chen
41
1
0
21 Jan 2024
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization
  Dilemma in Out-of-Distribution Generalization
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
47
36
0
15 Jun 2022
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
104
209
0
07 Sep 2021
Domain Invariant Adversarial Learning
Domain Invariant Adversarial Learning
Matan Levi
Idan Attias
A. Kontorovich
AAML
OOD
75
11
0
01 Apr 2021
Scalable Pareto Front Approximation for Deep Multi-Objective Learning
Scalable Pareto Front Approximation for Deep Multi-Objective Learning
Michael Ruchte
Josif Grabocka
61
59
0
24 Mar 2021
Domain Adversarial Neural Networks for Domain Generalization: When It
  Works and How to Improve
Domain Adversarial Neural Networks for Domain Generalization: When It Works and How to Improve
Anthony Sicilia
Xingchen Zhao
Seong Jae Hwang
OOD
AI4CE
33
75
0
07 Feb 2021
Hierarchical Variational Auto-Encoding for Unsupervised Domain
  Generalization
Hierarchical Variational Auto-Encoding for Unsupervised Domain Generalization
Xudong Sun
Florian Buettner
BDL
OOD
DRL
42
3
0
23 Jan 2021
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
76
1,143
0
02 Jul 2020
Pareto Multi-Task Learning
Pareto Multi-Task Learning
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
76
350
0
30 Dec 2019
Tutorial and Survey on Probabilistic Graphical Model and Variational
  Inference in Deep Reinforcement Learning
Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning
Xudong Sun
B. Bischl
BDL
47
9
0
25 Aug 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
177
2,222
0
05 Jul 2019
Variational Resampling Based Assessment of Deep Neural Networks under
  Distribution Shift
Variational Resampling Based Assessment of Deep Neural Networks under Distribution Shift
Xudong Sun
Alexej Gossmann
Yu Wang
B. Bischl
OOD
53
5
0
07 Jun 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
65
201
0
24 May 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEs
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDL
CML
DRL
35
100
0
13 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
90
2,498
0
19 Apr 2019
Domain Generalization by Solving Jigsaw Puzzles
Domain Generalization by Solving Jigsaw Puzzles
Fabio Maria Carlucci
A. DÍnnocente
S. Bucci
Barbara Caputo
Tatiana Tommasi
SSL
64
815
0
16 Mar 2019
High Dimensional Restrictive Federated Model Selection with
  multi-objective Bayesian Optimization over shifted distributions
High Dimensional Restrictive Federated Model Selection with multi-objective Bayesian Optimization over shifted distributions
Xudong Sun
Andrea Bommert
Florian Pfisterer
Jörg Rahnenführer
Michel Lang
B. Bischl
FedML
50
12
0
24 Feb 2019
Piecewise Strong Convexity of Neural Networks
Piecewise Strong Convexity of Neural Networks
Tristan Milne
32
21
0
30 Oct 2018
Multi-Task Learning as Multi-Objective Optimization
Multi-Task Learning as Multi-Objective Optimization
Ozan Sener
V. Koltun
159
1,281
0
10 Oct 2018
Taming VAEs
Taming VAEs
Danilo Jimenez Rezende
Fabio Viola
DRL
CML
63
186
0
01 Oct 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
73
672
0
02 May 2018
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Philipp Probst
B. Bischl
A. Boulesteix
60
614
0
26 Feb 2018
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
135
2,136
0
14 Nov 2017
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
91
1,422
0
10 Oct 2017
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
124
1,444
0
09 Oct 2017
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,235
0
12 Jun 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
68
4
0
20 Apr 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
95
911
0
06 Feb 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,484
0
28 May 2015
1