ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12747
  4. Cited By
N-Modal Contrastive Losses with Applications to Social Media Data in
  Trimodal Space

N-Modal Contrastive Losses with Applications to Social Media Data in Trimodal Space

18 March 2024
William Theisen
Walter J. Scheirer
ArXivPDFHTML

Papers citing "N-Modal Contrastive Losses with Applications to Social Media Data in Trimodal Space"

5 / 5 papers shown
Title
More than Memes: A Multimodal Topic Modeling Approach to Conspiracy Theories on Telegram
More than Memes: A Multimodal Topic Modeling Approach to Conspiracy Theories on Telegram
Elisabeth Steffen
26
0
0
11 Oct 2024
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text
  Understanding
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding
Hu Xu
Gargi Ghosh
Po-Yao (Bernie) Huang
Dmytro Okhonko
Armen Aghajanyan
Florian Metze
Luke Zettlemoyer
Florian Metze Luke Zettlemoyer Christoph Feichtenhofer
CLIP
VLM
253
558
0
28 Sep 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
255
4,774
0
24 Feb 2021
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
163
25,247
0
09 Jun 2011
1