Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.12143
Cited By
v1
v2 (latest)
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
18 March 2024
Miltiadis Kofinas
Boris Knyazev
Yan Zhang
Yunlu Chen
Gertjan J. Burghouts
E. Gavves
Cees G. M. Snoek
David W. Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Github (80★)
Papers citing
"Graph Neural Networks for Learning Equivariant Representations of Neural Networks"
28 / 28 papers shown
Title
A Model Zoo of Vision Transformers
Damian Falk
Léo Meynent
Florence Pfammatter
Konstantin Schurholt
Damian Borth
252
1
0
14 Apr 2025
Neural Solver Selection for Combinatorial Optimization
Chengrui Gao
Haopu Shang
Ke Xue
Chao Qian
82
0
0
13 Oct 2024
Monomial Matrix Group Equivariant Neural Functional Networks
Hoang V. Tran
Thieu N. Vo
Tho H. Tran
An T. Nguyen
Tan M. Nguyen
131
9
0
18 Sep 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
125
10
0
09 Jun 2024
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
105
56
0
27 Feb 2023
NeRN -- Learning Neural Representations for Neural Networks
Maor Ashkenazi
Zohar Rimon
Ron Vainshtein
Shir Levi
Elad Richardson
Pinchas Mintz
Eran Treister
3DH
78
13
0
27 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
113
60
0
17 Nov 2022
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
124
42
0
29 Sep 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
150
69
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
89
21
0
22 Sep 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
145
32
0
22 Mar 2022
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
100
83
0
25 Oct 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
254
236
0
23 Mar 2021
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
83
52
0
18 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
144
61
0
23 Sep 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
174
2,579
0
17 Jun 2020
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
140
677
0
12 Apr 2020
Classifying the classifier: dissecting the weight space of neural networks
Gabriel Eilertsen
Daniel Jonsson
Timo Ropinski
Jonas Unger
Anders Ynnerman
68
54
0
13 Feb 2020
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
98
148
0
24 Oct 2018
FiLM: Visual Reasoning with a General Conditioning Layer
Ethan Perez
Florian Strub
H. D. Vries
Vincent Dumoulin
Aaron Courville
FAtt
AIMat
OffRL
AI4CE
372
2,239
0
22 Sep 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
289
8,928
0
25 Aug 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
600
7,500
0
04 Apr 2017
Learned Optimizers that Scale and Generalize
Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Narain Sohl-Dickstein
AI4CE
90
284
0
14 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
686
29,183
0
09 Sep 2016
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
437
10,548
0
21 Jul 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
132
2,009
0
14 Jun 2016
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
469
43,357
0
11 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,575
0
04 Sep 2014
1