ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.05100
  4. Cited By
Exploring the Adversarial Frontier: Quantifying Robustness via
  Adversarial Hypervolume

Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume

8 March 2024
Ping Guo
Cheng Gong
Xi Lin
Zhiyuan Yang
Qingfu Zhang
    AAML
ArXivPDFHTML

Papers citing "Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume"

10 / 10 papers shown
Title
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Ping Guo
Cheng Gong
Xi Lin
Fei Liu
Zhichao Lu
Qingfu Zhang
Zhenkun Wang
AAML
45
0
0
13 Jan 2025
PuriDefense: Randomized Local Implicit Adversarial Purification for
  Defending Black-box Query-based Attacks
PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Ping Guo
Zhiyuan Yang
Xi Lin
Qingchuan Zhao
Qingfu Zhang
AAML
40
4
0
19 Jan 2024
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation
  using Generative Models
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models
Zaitang Li
Pin-Yu Chen
Tsung-Yi Ho
AAML
DiffM
32
4
0
19 Apr 2023
Efficient and Effective Augmentation Strategy for Adversarial Training
Efficient and Effective Augmentation Strategy for Adversarial Training
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
70
58
0
27 Oct 2022
How many perturbations break this model? Evaluating robustness beyond
  adversarial accuracy
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
R. Olivier
Bhiksha Raj
AAML
31
5
0
08 Jul 2022
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
B. Wen
Qian Wang
AAML
76
473
0
02 Feb 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
677
0
19 Oct 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1