Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.18803
Cited By
To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared Models
29 February 2024
Cyrus Cousins
I. E. Kumar
Suresh Venkatasubramanian
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared Models"
11 / 11 papers shown
Title
An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning
Cyrus Cousins
FaML
107
27
0
29 Apr 2021
Adaptive Sampling for Minimax Fair Classification
S. Shekhar
Greg Fields
Mohammad Ghavamzadeh
T. Javidi
FaML
110
37
0
01 Mar 2021
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
74
193
0
03 Nov 2020
Fairness without Demographics through Adversarially Reweighted Learning
Preethi Lahoti
Alex Beutel
Jilin Chen
Kang Lee
Flavien Prost
Nithum Thain
Xuezhi Wang
Ed H. Chi
FaML
121
337
0
23 Jun 2020
Active Sampling for Min-Max Fairness
Jacob D. Abernethy
Pranjal Awasthi
Matthäus Kleindessner
Jamie Morgenstern
Chris Russell
Jie Zhang
FaML
46
50
0
11 Jun 2020
To Split or Not to Split: The Impact of Disparate Treatment in Classification
Hao Wang
Hsiang Hsu
Mario Díaz
Flavio du Pin Calmon
71
23
0
12 Feb 2020
Accuracy comparison across face recognition algorithms: Where are we on measuring race bias?
J. G. Cavazos
P. Phillips
Carlos D. Castillo
Alice J. OrToole
CVBM
51
169
0
16 Dec 2019
Distributionally Robust Language Modeling
Yonatan Oren
Shiori Sagawa
Tatsunori B. Hashimoto
Percy Liang
OOD
70
173
0
04 Sep 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
568
14
0
23 Aug 2019
Why Is My Classifier Discriminatory?
Irene Y. Chen
Fredrik D. Johansson
David Sontag
FaML
69
396
0
30 May 2018
A Survey on Multi-Task Learning
Yu Zhang
Qiang Yang
AIMat
605
2,235
0
25 Jul 2017
1