ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.18762
  4. Cited By
Disentangling the Causes of Plasticity Loss in Neural Networks

Disentangling the Causes of Plasticity Loss in Neural Networks

29 February 2024
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Disentangling the Causes of Plasticity Loss in Neural Networks"

34 / 34 papers shown
Title
Understanding and Exploiting Plasticity for Non-stationary Network Resource Adaptation
Understanding and Exploiting Plasticity for Non-stationary Network Resource Adaptation
Zhiqiang He
Zhi Liu
CLL
96
0
0
02 May 2025
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC
Tyler Clark
Mark Towers
Christine Evers
Jonathon Hare
OffRL
138
1
0
06 Nov 2024
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
C. Voelcker
Marcel Hussing
Eric Eaton
Amir-massoud Farahmand
Igor Gilitschenski
96
4
0
11 Oct 2024
Neuroplastic Expansion in Deep Reinforcement Learning
Neuroplastic Expansion in Deep Reinforcement Learning
Jiashun Liu
J. Obando-Ceron
Rameswar Panda
L. Pan
89
6
0
10 Oct 2024
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
Ghada Sokar
J. Obando-Ceron
Rameswar Panda
Hugo Larochelle
Pablo Samuel Castro
MoE
310
7
0
02 Oct 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
111
4
0
09 Jul 2024
Simplifying Deep Temporal Difference Learning
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
133
26
0
05 Jul 2024
Small-scale proxies for large-scale Transformer training instabilities
Small-scale proxies for large-scale Transformer training instabilities
Mitchell Wortsman
Peter J. Liu
Lechao Xiao
Katie Everett
A. Alemi
...
Jascha Narain Sohl-Dickstein
Kelvin Xu
Jaehoon Lee
Justin Gilmer
Simon Kornblith
87
99
0
25 Sep 2023
Continual Learning as Computationally Constrained Reinforcement Learning
Continual Learning as Computationally Constrained Reinforcement Learning
Saurabh Kumar
Henrik Marklund
Anand Srinivasa Rao
Yifan Zhu
Hong Jun Jeon
Yueyang Liu
Benjamin Van Roy
CLL
65
24
0
10 Jul 2023
PLASTIC: Improving Input and Label Plasticity for Sample Efficient
  Reinforcement Learning
PLASTIC: Improving Input and Label Plasticity for Sample Efficient Reinforcement Learning
Hojoon Lee
Hanseul Cho
Hyunseung Kim
Daehoon Gwak
Joonkee Kim
Jaegul Choo
Se-Young Yun
Chulhee Yun
OffRL
128
29
0
19 Jun 2023
Deep Reinforcement Learning with Plasticity Injection
Deep Reinforcement Learning with Plasticity Injection
Evgenii Nikishin
Junhyuk Oh
Georg Ostrovski
Clare Lyle
Razvan Pascanu
Will Dabney
André Barreto
OffRL
47
52
0
24 May 2023
Understanding plasticity in neural networks
Understanding plasticity in neural networks
Clare Lyle
Zeyu Zheng
Evgenii Nikishin
Bernardo Avila-Pires
Razvan Pascanu
Will Dabney
AI4CE
105
104
0
02 Mar 2023
Deep Transformers without Shortcuts: Modifying Self-attention for
  Faithful Signal Propagation
Deep Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation
Bobby He
James Martens
Guodong Zhang
Aleksandar Botev
Andy Brock
Samuel L. Smith
Yee Whye Teh
79
30
0
20 Feb 2023
Understanding and Preventing Capacity Loss in Reinforcement Learning
Understanding and Preventing Capacity Loss in Reinforcement Learning
Clare Lyle
Mark Rowland
Will Dabney
CLL
84
113
0
20 Apr 2022
Deep Learning without Shortcuts: Shaping the Kernel with Tailored
  Rectifiers
Deep Learning without Shortcuts: Shaping the Kernel with Tailored Rectifiers
Guodong Zhang
Aleksandar Botev
James Martens
OffRL
73
28
0
15 Mar 2022
A study on the plasticity of neural networks
A study on the plasticity of neural networks
Tudor Berariu
Wojciech M. Czarnecki
Soham De
J. Bornschein
Samuel L. Smith
Razvan Pascanu
Claudia Clopath
CLLAI4CE
61
32
0
31 May 2021
Decoupling Value and Policy for Generalization in Reinforcement Learning
Decoupling Value and Policy for Generalization in Reinforcement Learning
Roberta Raileanu
Rob Fergus
DRLOffRL
65
99
0
20 Feb 2021
On the Origin of Implicit Regularization in Stochastic Gradient Descent
On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel L. Smith
Benoit Dherin
David Barrett
Soham De
MLT
47
204
0
28 Jan 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
225
1,445
0
14 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
131
268
0
18 Nov 2020
Implicit Gradient Regularization
Implicit Gradient Regularization
David Barrett
Benoit Dherin
76
152
0
23 Sep 2020
Transient Non-Stationarity and Generalisation in Deep Reinforcement
  Learning
Transient Non-Stationarity and Generalisation in Deep Reinforcement Learning
Maximilian Igl
Gregory Farquhar
Jelena Luketina
Wendelin Boehmer
Shimon Whiteson
81
88
0
10 Jun 2020
Understanding and Improving Layer Normalization
Understanding and Improving Layer Normalization
Jingjing Xu
Xu Sun
Zhiyuan Zhang
Guangxiang Zhao
Junyang Lin
FAtt
95
356
0
16 Nov 2019
On the Impact of the Activation Function on Deep Neural Networks
  Training
On the Impact of the Activation Function on Deep Neural Networks Training
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
ODL
65
200
0
19 Feb 2019
Shampoo: Preconditioned Stochastic Tensor Optimization
Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta
Tomer Koren
Y. Singer
ODL
92
226
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,406
0
04 Jan 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
135
1,099
0
01 Nov 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
101
1,506
0
21 Jul 2017
The Shattered Gradients Problem: If resnets are the answer, then what is
  the question?
The Shattered Gradients Problem: If resnets are the answer, then what is the question?
David Balduzzi
Marcus Frean
Lennox Leary
J. P. Lewis
Kurt Wan-Duo Ma
Brian McWilliams
ODL
73
406
0
28 Feb 2017
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
426
10,531
0
21 Jul 2016
Exponential expressivity in deep neural networks through transient chaos
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
90
595
0
16 Jun 2016
Learning values across many orders of magnitude
Learning values across many orders of magnitude
H. V. Hasselt
A. Guez
Matteo Hessel
Volodymyr Mnih
David Silver
65
170
0
24 Feb 2016
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
On the Number of Linear Regions of Deep Neural Networks
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
92
1,256
0
08 Feb 2014
1