ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.14017
  4. Cited By
D-Flow: Differentiating through Flows for Controlled Generation

D-Flow: Differentiating through Flows for Controlled Generation

21 February 2024
Heli Ben-Hamu
Omri Puny
Itai Gat
Brian Karrer
Uriel Singer
Y. Lipman
ArXivPDFHTML

Papers citing "D-Flow: Differentiating through Flows for Controlled Generation"

21 / 21 papers shown
Title
Minimum-Excess-Work Guidance
Minimum-Excess-Work Guidance
Christopher Kolloff
Tobias Höppe
Emmanouil Angelis
Mathias Jacob Schreiner
Stefan Bauer
Andrea Dittadi
Simon Olsson
OT
56
0
0
19 May 2025
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Michal Balcerak
Tamaz Amiranashvili
Suprosanna Shit
Antonio Terpin
Lea Bogensperger
Sebastian Kaltenbach
Petros Koumoutsakos
Bjoern Menze
DiffM
93
2
0
14 Apr 2025
ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
Yunhong Min
Daehyeon Choi
Kyeongmin Yeo
Jihyun Lee
Minhyuk Sung
74
0
0
28 Mar 2025
Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
Jaihoon Kim
Taehoon Yoon
Jisung Hwang
Minhyuk Sung
DiffM
88
3
0
25 Mar 2025
Fast and Robust Visuomotor Riemannian Flow Matching Policy
Fast and Robust Visuomotor Riemannian Flow Matching Policy
Haoran Ding
Noémie Jaquier
Jan Peters
Leonel Rozo
121
3
0
14 Dec 2024
Training Free Guided Flow Matching with Optimal Control
Training Free Guided Flow Matching with Optimal Control
Luran Wang
Chaoran Cheng
Yizhen Liao
Yanru Qu
Ge Liu
52
2
0
23 Oct 2024
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Severi Rissanen
Markus Heinonen
Arno Solin
DiffM
316
1
0
15 Oct 2024
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
Marcel Kollovieh
Marten Lienen
David Lüdke
Leo Schwinn
Stephan Günnemann
AI4TS
BDL
DiffM
67
7
0
03 Oct 2024
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Yasi Zhang
Peiyu Yu
Yaxuan Zhu
Yingshan Chang
Feng Gao
Yingnian Wu
Oscar Leong
98
8
0
29 May 2024
Equivariant Flow Matching with Hybrid Probability Transport
Equivariant Flow Matching with Hybrid Probability Transport
Yuxuan Song
Jingjing Gong
Minkai Xu
Ziyao Cao
Yanyan Lan
Stefano Ermon
Hao Zhou
Wei-Ying Ma
DiffM
50
51
0
12 Dec 2023
Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
Yinhuai Wang
Jiwen Yu
Jian Zhang
DiffM
60
437
0
01 Dec 2022
Classifier-Free Diffusion Guidance
Classifier-Free Diffusion Guidance
Jonathan Ho
Tim Salimans
FaML
75
3,786
0
26 Jul 2022
Improving Diffusion Models for Inverse Problems using Manifold
  Constraints
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Hyungjin Chung
Byeongsu Sim
Dohoon Ryu
J. C. Ye
DiffM
MedIm
67
444
0
02 Jun 2022
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
245
809
0
27 Jan 2022
Generative Flows as a General Purpose Solution for Inverse Problems
Generative Flows as a General Purpose Solution for Inverse Problems
J. Chávez
AI4CE
24
1
0
25 Oct 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
262
6,293
0
26 Nov 2020
Solving Inverse Problems with a Flow-based Noise Model
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
80
37
0
18 Mar 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
154
3,803
0
12 Jul 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
55
861
0
02 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
225
5,024
0
19 Jun 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
259
11,610
0
11 Jan 2018
1