Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.11173
Cited By
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
17 February 2024
Andrew Lowy
Jonathan R. Ullman
Stephen J. Wright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization"
20 / 20 papers shown
Title
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
396
0
0
10 Oct 2024
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
72
13
0
20 Feb 2023
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
66
14
0
12 Oct 2022
Private Non-Convex Federated Learning Without a Trusted Server
Andrew Lowy
Ali Ghafelebashi
Meisam Razaviyayn
FedML
62
27
0
13 Mar 2022
Public Data-Assisted Mirror Descent for Private Model Training
Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Indra Ramaswamy
Shuang Song
Thomas Steinke
Vinith Suriyakumar
Om Thakkar
Abhradeep Thakurta
80
51
0
01 Dec 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
230
367
0
13 Oct 2021
Non-Euclidean Differentially Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Raef Bassily
Cristóbal Guzmán
Anupama Nandi
103
68
0
01 Mar 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
489
1,923
0
14 Dec 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
65
25
0
24 Jun 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
58
209
0
10 May 2020
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
77
262
0
29 Feb 2020
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
78
242
0
27 Aug 2019
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
Ehsan Amid
Manfred K. Warmuth
Rohan Anil
Tomer Koren
NoLa
42
129
0
08 Jun 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
58
74
0
02 Jan 2019
How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD
Zeyuan Allen-Zhu
ODL
73
171
0
08 Jan 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
261
4,135
0
18 Oct 2016
Gradient Descent Learns Linear Dynamical Systems
Moritz Hardt
Tengyu Ma
Benjamin Recht
107
240
0
16 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
213
6,130
0
01 Jul 2016
Matrix Completion has No Spurious Local Minimum
Rong Ge
Jason D. Lee
Tengyu Ma
108
599
0
24 May 2016
A Geometric Analysis of Phase Retrieval
Ju Sun
Qing Qu
John N. Wright
127
526
0
22 Feb 2016
1