ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08280
  4. Cited By
Pix2Code: Learning to Compose Neural Visual Concepts as Programs

Pix2Code: Learning to Compose Neural Visual Concepts as Programs

13 February 2024
Antonia Wüst
Wolfgang Stammer
Quentin Delfosse
Devendra Singh Dhami
Kristian Kersting
ArXivPDFHTML

Papers citing "Pix2Code: Learning to Compose Neural Visual Concepts as Programs"

24 / 24 papers shown
Title
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
144
5
0
16 Feb 2025
Bongard in Wonderland: Visual Puzzles that Still Make AI Go Mad?
Bongard in Wonderland: Visual Puzzles that Still Make AI Go Mad?
Antonia Wüst
Tim Nelson Tobiasch
Lukas Helff
Inga Ibs
Wolfgang Stammer
Devendra Singh Dhami
Constantin Rothkopf
Kristian Kersting
CoGe
ReLM
VLM
LRM
122
2
0
25 Oct 2024
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
Hikaru Shindo
Quentin Delfosse
Devendra Singh Dhami
Kristian Kersting
92
5
0
15 Oct 2024
Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Max Liu
Chan-Hung Yu
Wei-Hsu Lee
Cheng-Wei Hung
Yen-Chun Chen
Shao-Hua Sun
79
5
0
26 May 2024
LILO: Learning Interpretable Libraries by Compressing and Documenting
  Code
LILO: Learning Interpretable Libraries by Compressing and Documenting Code
Gabriel Grand
L. Wong
Matthew Bowers
Theo X. Olausson
Muxin Liu
Joshua B. Tenenbaum
Jacob Andreas
46
21
0
30 Oct 2023
OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments
OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments
Quentin Delfosse
Jannis Blüml
Bjarne Gregori
Sebastian Sztwiertnia
Kristian Kersting
88
18
0
14 Jun 2023
Interpretable and Explainable Logical Policies via Neurally Guided
  Symbolic Abstraction
Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction
Quentin Delfosse
Hikaru Shindo
Devendra Singh Dhami
Kristian Kersting
66
38
0
02 Jun 2023
Boosting Object Representation Learning via Motion and Object Continuity
Boosting Object Representation Learning via Motion and Object Continuity
Quentin Delfosse
Wolfgang Stammer
Thomas Rothenbacher
Dwarak Vittal
Kristian Kersting
OCL
69
20
0
16 Nov 2022
From Perception to Programs: Regularize, Overparameterize, and Amortize
From Perception to Programs: Regularize, Overparameterize, and Amortize
Hao Tang
Kevin Ellis
NAI
43
10
0
13 Jun 2022
Interactive Disentanglement: Learning Concepts by Interacting with their
  Prototype Representations
Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations
Wolfgang Stammer
Marius Memmel
P. Schramowski
Kristian Kersting
127
27
0
04 Dec 2021
Pix2seq: A Language Modeling Framework for Object Detection
Pix2seq: A Language Modeling Framework for Object Detection
Ting-Li Chen
Saurabh Saxena
Lala Li
David J. Fleet
Geoffrey E. Hinton
MLLM
ViT
VLM
266
347
0
22 Sep 2021
CCVS: Context-aware Controllable Video Synthesis
CCVS: Context-aware Controllable Video Synthesis
G. L. Moing
Jean Ponce
Cordelia Schmid
76
79
0
16 Jul 2021
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
201
2,048
0
16 Apr 2020
Learning Compositional Rules via Neural Program Synthesis
Learning Compositional Rules via Neural Program Synthesis
Maxwell Nye
Armando Solar-Lezama
J. Tenenbaum
Brenden M. Lake
NAI
LRM
60
118
0
12 Mar 2020
Evaluating the Progress of Deep Learning for Visual Relational Concepts
Evaluating the Progress of Deep Learning for Visual Relational Concepts
Sebastian Stabinger
Peer David
J. Piater
A. Rodríguez-Sánchez
42
19
0
29 Jan 2020
Making deep neural networks right for the right scientific reasons by
  interacting with their explanations
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
91
212
0
15 Jan 2020
Write, Execute, Assess: Program Synthesis with a REPL
Write, Execute, Assess: Program Synthesis with a REPL
Kevin Ellis
Maxwell Nye
Yewen Pu
Felix Sosa
J. Tenenbaum
Armando Solar-Lezama
77
166
0
09 Jun 2019
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and
  Sentences From Natural Supervision
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
Jiayuan Mao
Chuang Gan
Pushmeet Kohli
J. Tenenbaum
Jiajun Wu
NAI
131
697
0
26 Apr 2019
HOUDINI: Lifelong Learning as Program Synthesis
HOUDINI: Lifelong Learning as Program Synthesis
Lazar Valkov
Dipak Chaudhari
Akash Srivastava
Charles Sutton
Swarat Chaudhuri
61
81
0
31 Mar 2018
A simple neural network module for relational reasoning
A simple neural network module for relational reasoning
Adam Santoro
David Raposo
David Barrett
Mateusz Malinowski
Razvan Pascanu
Peter W. Battaglia
Timothy Lillicrap
GNN
NAI
177
1,614
0
05 Jun 2017
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary
  Visual Reasoning
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson
B. Hariharan
Laurens van der Maaten
Li Fei-Fei
C. L. Zitnick
Ross B. Girshick
CoGe
295
2,375
0
20 Dec 2016
DeepCoder: Learning to Write Programs
DeepCoder: Learning to Write Programs
Matej Balog
Alexander L. Gaunt
Marc Brockschmidt
Sebastian Nowozin
Daniel Tarlow
AIMat
NAI
83
573
0
07 Nov 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,638
0
01 May 2014
1