Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.08187
Cited By
Learning time-dependent PDE via graph neural networks and deep operator network for robust accuracy on irregular grids
13 February 2024
S. Cho
Jae Yong Lee
Hyung Ju Hwang
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning time-dependent PDE via graph neural networks and deep operator network for robust accuracy on irregular grids"
19 / 19 papers shown
Title
Non-equispaced Fourier Neural Solvers for PDEs
Haitao Lin
Lirong Wu
Yongjie Xu
Yufei Huang
Siyuan Li
Guojiang Zhao
Z. Stan
52
8
0
09 Dec 2022
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
67
230
0
13 Oct 2022
FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators
Thorsten Kurth
Shashank Subramanian
P. Harrington
Jaideep Pathak
Morteza Mardani
D. Hall
Andrea Miele
K. Kashinath
Anima Anandkumar
AI4Cl
81
187
0
08 Aug 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
102
166
0
26 May 2022
Physics-Embedded Neural Networks: Graph Neural PDE Solvers with Mixed Boundary Conditions
Masanobu Horie
Naoto Mitsume
PINN
AI4CE
85
27
0
24 May 2022
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
117
449
0
19 Aug 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
699
0
19 Mar 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
497
2,414
0
18 Oct 2020
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
82
790
0
07 Oct 2020
Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction
Filipe de Avila Belbute-Peres
T. Economon
J. Zico Kolter
AI4CE
95
231
0
08 Jul 2020
Learning continuous-time PDEs from sparse data with graph neural networks
V. Iakovlev
Markus Heinonen
Harri Lähdesmäki
AI4CE
79
70
0
16 Jun 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
139
1,091
0
21 Feb 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
245
2,131
0
08 Oct 2019
Graph Matching Networks for Learning the Similarity of Graph Structured Objects
Yujia Li
Chenjie Gu
T. Dullien
Oriol Vinyals
Pushmeet Kohli
102
530
0
29 Apr 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
226
4,341
0
06 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
106
867
0
18 Jan 2019
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
758
3,121
0
04 Jun 2018
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
121
1,387
0
30 Sep 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
1