Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.07011
Cited By
v1
v2 (latest)
FedImpro: Measuring and Improving Client Update in Federated Learning
10 February 2024
Zhenheng Tang
Yonggang Zhang
Shaoshuai Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FedImpro: Measuring and Improving Client Update in Federated Learning"
50 / 51 papers shown
Title
Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead
Won-Jun Jang
Hyeon-Seo Park
Si-Hyeon Lee
FedML
486
0
0
10 Feb 2025
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions
Zemin Liu
Yuan N. Li
Nan-Fang Chen
Qian Wang
Bryan Hooi
Bin He
FaML
79
15
0
26 Aug 2023
No Fear of Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and Fixed Classifier
Zexi Li
Xinyi Shang
Rui He
Tao R. Lin
Chao Wu
FedML
99
55
0
17 Mar 2023
FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training
Zhenheng Tang
Xiaowen Chu
Ryan Yide Ran
Sunwoo Lee
Shaoshuai Shi
Yonggang Zhang
Yuxin Wang
Alex Liang
A. Avestimehr
Chaoyang He
FedML
67
10
0
03 Mar 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
82
22
0
01 Feb 2023
Quantization Robust Federated Learning for Efficient Inference on Heterogeneous Devices
Kartik Gupta
Marios Fournarakis
M. Reisser
Christos Louizos
Markus Nagel
FedML
61
16
0
22 Jun 2022
Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning
Zhenheng Tang
Yonggang Zhang
Shaoshuai Shi
Xinfu He
Bo Han
Xiaowen Chu
FedML
99
76
0
06 Jun 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
Chaoyang He
Alay Dilipbhai Shah
Zhenheng Tang
Adarshan Naiynar Sivashunmugam
Keerti Bhogaraju
Mita Shimpi
Li Shen
Xiaowen Chu
Mahdi Soltanolkotabi
Salman Avestimehr
VLM
FedML
91
69
0
22 Nov 2021
Federated Learning Based on Dynamic Regularization
D. A. E. Acar
Yue Zhao
Ramon Matas Navarro
Matthew Mattina
P. Whatmough
Venkatesh Saligrama
FedML
81
781
0
08 Nov 2021
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Ji Lin
Wei-Ming Chen
Han Cai
Chuang Gan
Song Han
90
159
0
28 Oct 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
110
76
0
27 Oct 2021
FedMix: Approximation of Mixup under Mean Augmented Federated Learning
Tehrim Yoon
Sumin Shin
Sung Ju Hwang
Eunho Yang
FedML
76
172
0
01 Jul 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
77
112
0
15 Jun 2021
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
Mi Luo
Fei Chen
Dapeng Hu
Yifan Zhang
Jian Liang
Jiashi Feng
FedML
94
344
0
09 Jun 2021
FedScale: Benchmarking Model and System Performance of Federated Learning at Scale
Fan Lai
Yinwei Dai
Sanjay Sri Vallabh Singapuram
Jiachen Liu
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
109
204
0
24 May 2021
Model-Contrastive Federated Learning
Qinbin Li
Bingsheng He
Basel Alomair
FedML
102
1,056
0
30 Mar 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
332
874
0
01 Mar 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
168
992
0
03 Feb 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
88
261
0
27 Jan 2021
Collaborative Machine Learning with Incentive-Aware Model Rewards
Rachael Hwee Ling Sim
Yehong Zhang
M. Chan
Hsiang Low
FedML
172
125
0
24 Oct 2020
Oort: Efficient Federated Learning via Guided Participant Selection
Fan Lai
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
OODD
126
275
0
12 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
157
408
0
03 Oct 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
247
577
0
27 Jul 2020
Regularizing Deep Networks with Semantic Data Augmentation
Yulin Wang
Gao Huang
Shiji Song
Xuran Pan
Yitong Xia
Cheng Wu
130
159
0
21 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
73
1,352
0
15 Jul 2020
XOR Mixup: Privacy-Preserving Data Augmentation for One-Shot Federated Learning
Myungjae Shin
Chihoon Hwang
Joongheon Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
59
111
0
09 Jun 2020
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
92
589
0
25 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
87
515
0
23 Mar 2020
Federated Visual Classification with Real-World Data Distribution
T. Hsu
Qi
Matthew Brown
FedML
139
202
0
18 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
190
1,452
0
29 Feb 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
120
564
0
06 Jan 2020
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
83
169
0
24 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
275
6,294
0
10 Dec 2019
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
104
862
0
08 Oct 2019
Active Federated Learning
Jack Goetz
Kshitiz Malik
D. Bui
Seungwhan Moon
Honglei Liu
Anuj Kumar
FedML
61
138
0
27 Sep 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
150
1,164
0
13 Sep 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
130
1,006
0
23 Jul 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
144
543
0
10 Mar 2019
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser
Steve Hanneke
Nathan Srebro
47
141
0
12 Feb 2019
Training Neural Networks with Local Error Signals
Arild Nøkland
L. Eidnes
105
228
0
20 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
625
10,595
0
12 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
158
1,424
0
03 Dec 2018
Training Neural Networks Using Features Replay
Zhouyuan Huo
Bin Gu
Heng-Chiao Huang
79
70
0
12 Jul 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,928
0
25 Aug 2017
Towards Practical Differential Privacy for SQL Queries
Noah M. Johnson
Joseph P. Near
Basel Alomair
56
269
0
28 Jun 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
68
1,235
0
25 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
362
4,721
0
15 Mar 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
312
4,657
0
18 Oct 2016
Decoupled Neural Interfaces using Synthetic Gradients
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
92
358
0
18 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
412
17,615
0
17 Feb 2016
1
2
Next