ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.05828
  4. Cited By
Discovering Temporally-Aware Reinforcement Learning Algorithms

Discovering Temporally-Aware Reinforcement Learning Algorithms

8 February 2024
Matthew Jackson
Chris Xiaoxuan Lu
Louis Kirsch
R. T. Lange
Shimon Whiteson
Jakob N. Foerster
ArXivPDFHTML

Papers citing "Discovering Temporally-Aware Reinforcement Learning Algorithms"

17 / 17 papers shown
Title
Adam on Local Time: Addressing Nonstationarity in RL with Relative Adam
  Timesteps
Adam on Local Time: Addressing Nonstationarity in RL with Relative Adam Timesteps
Benjamin Ellis
Matthew Jackson
Andrei Lupu
Alexander David Goldie
Mattie Fellows
Shimon Whiteson
Jakob Foerster
85
0
0
22 Dec 2024
Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks
Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks
Michael T. Matthews
Michael Beukman
Chris Xiaoxuan Lu
Jakob Foerster
OffRL
AI4CE
36
2
0
30 Oct 2024
JaxLife: An Open-Ended Agentic Simulator
JaxLife: An Open-Ended Agentic Simulator
Chris Xiaoxuan Lu
Michael Beukman
Michael T. Matthews
Jakob Foerster
LM&Ro
43
3
0
01 Sep 2024
Black box meta-learning intrinsic rewards for sparse-reward environments
Black box meta-learning intrinsic rewards for sparse-reward environments
Octavio Pappalardo
Rodrigo Ramele
Juan Miguel Santos
OffRL
38
0
0
31 Jul 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
42
3
0
09 Jul 2024
Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial
  Optimization
Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization
Félix Chalumeau
Refiloe Shabe
Noah de Nicola
Arnu Pretorius
Thomas D. Barrett
Nathan Grinsztajn
71
2
0
24 Jun 2024
Behaviour Distillation
Behaviour Distillation
Andrei Lupu
Chris Xiaoxuan Lu
Jarek Liesen
R. T. Lange
Jakob Foerster
DD
39
4
0
21 Jun 2024
Discovering Minimal Reinforcement Learning Environments
Discovering Minimal Reinforcement Learning Environments
Jarek Liesen
Chris Xiaoxuan Lu
Andrei Lupu
Jakob N. Foerster
Henning Sprekeler
R. T. Lange
OffRL
48
3
0
18 Jun 2024
EvIL: Evolution Strategies for Generalisable Imitation Learning
EvIL: Evolution Strategies for Generalisable Imitation Learning
Silvia Sapora
Gokul Swamy
Chris Xiaoxuan Lu
Yee Whye Teh
Jakob Nicolaus Foerster
36
6
0
15 Jun 2024
Discovering Preference Optimization Algorithms with and for Large
  Language Models
Discovering Preference Optimization Algorithms with and for Large Language Models
Chris Xiaoxuan Lu
Samuel Holt
Claudio Fanconi
Alex J. Chan
Jakob Foerster
M. Schaar
R. T. Lange
OffRL
37
15
0
12 Jun 2024
Searching Search Spaces: Meta-evolving a Geometric Encoding for Neural
  Networks
Searching Search Spaces: Meta-evolving a Geometric Encoding for Neural Networks
Tarek Kunze
Paul Templier
Dennis G. Wilson
35
0
0
20 Mar 2024
Learning mirror maps in policy mirror descent
Learning mirror maps in policy mirror descent
Carlo Alfano
Sebastian Towers
Silvia Sapora
Chris Xiaoxuan Lu
Patrick Rebeschini
30
0
0
07 Feb 2024
Bridging Evolutionary Algorithms and Reinforcement Learning: A
  Comprehensive Survey on Hybrid Algorithms
Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms
Pengyi Li
Jianye Hao
Hongyao Tang
Xian Fu
Yan Zheng
Ke Tang
39
9
0
22 Jan 2024
Structured State Space Models for In-Context Reinforcement Learning
Structured State Space Models for In-Context Reinforcement Learning
Chris Xiaoxuan Lu
Yannick Schroecker
Albert Gu
Emilio Parisotto
Jakob N. Foerster
Satinder Singh
Feryal M. P. Behbahani
AI4TS
97
82
0
07 Mar 2023
The Primacy Bias in Deep Reinforcement Learning
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Aaron C. Courville
OnRL
96
180
0
16 May 2022
Meta Learning Backpropagation And Improving It
Meta Learning Backpropagation And Improving It
Louis Kirsch
Jürgen Schmidhuber
51
56
0
29 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
1