ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.05443
  4. Cited By
Scalable Wasserstein Gradient Flow for Generative Modeling through
  Unbalanced Optimal Transport
v1v2v3 (latest)

Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport

8 February 2024
Jaemoo Choi
Jaewoong Choi
Myungjoo Kang
ArXiv (abs)PDFHTML

Papers citing "Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport"

34 / 34 papers shown
Title
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Michal Balcerak
Tamaz Amiranashvili
Suprosanna Shit
Antonio Terpin
Lea Bogensperger
Sebastian Kaltenbach
Petros Koumoutsakos
Bjoern Menze
DiffM
130
3
0
14 Apr 2025
Improving Neural Optimal Transport via Displacement Interpolation
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
82
2
0
03 Oct 2024
Improving and generalizing flow-based generative models with minibatch
  optimal transport
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OODDiffMOT
112
304
0
01 Feb 2023
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the
  JKO Scheme
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
88
20
0
30 Nov 2022
Subspace Diffusion Generative Models
Subspace Diffusion Generative Models
Bowen Jing
Gabriele Corso
Renato Berlinghieri
Tommi Jaakkola
DiffM
75
78
0
03 May 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
283
30,103
0
01 Mar 2022
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao
Karsten Kreis
Arash Vahdat
DiffM
98
555
0
15 Dec 2021
Score-Based Generative Modeling with Critically-Damped Langevin
  Diffusion
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn
Arash Vahdat
Karsten Kreis
DiffM
86
235
0
14 Dec 2021
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
135
57
0
04 Dec 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
98
21
0
21 Oct 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
67
684
0
10 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
80
57
0
01 Jun 2021
Wasserstein Proximal of GANs
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
46
47
0
13 Feb 2021
Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao
Yang Song
Ben Poole
Ying Nian Wu
Diederik P. Kingma
DiffM
62
128
0
15 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
347
6,551
0
26 Nov 2020
Dual Contradistinctive Generative Autoencoder
Dual Contradistinctive Generative Autoencoder
Gaurav Parmar
Dacheng Li
Kwonjoon Lee
Zhuowen Tu
GAN
56
82
0
19 Nov 2020
Robust Optimal Transport with Applications in Generative Modeling and
  Domain Adaptation
Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation
Yogesh Balaji
Ramalingam Chellappa
Soheil Feizi
OT
155
105
0
12 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
74
83
0
06 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
286
7,454
0
06 Oct 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
72
915
0
08 Jul 2020
Training Generative Adversarial Networks with Limited Data
Training Generative Adversarial Networks with Limited Data
Tero Karras
M. Aittala
Janne Hellsten
S. Laine
J. Lehtinen
Timo Aila
GAN
161
1,886
0
11 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
92
70
0
03 Jun 2020
Adversarial Latent Autoencoders
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GANDRL
91
261
0
09 Apr 2020
AutoGAN: Neural Architecture Search for Generative Adversarial Networks
AutoGAN: Neural Architecture Search for Generative Adversarial Networks
Xinyu Gong
Shiyu Chang
Yi Ding
Zhangyang Wang
GAN
67
263
0
11 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
297
3,138
0
09 Jul 2018
Approximate inference with Wasserstein gradient flows
Approximate inference with Wasserstein gradient flows
Charlie Frogner
T. Poggio
DiffM
20
32
0
12 Jun 2018
Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?
L. Mescheder
Andreas Geiger
Sebastian Nowozin
81
1,467
0
13 Jan 2018
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
224
9,558
0
31 Mar 2017
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
280
623
0
22 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
275
78
0
26 May 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSegGAN
479
2,573
0
25 Jan 2016
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
244
8,424
0
28 Nov 2014
1