Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.05098
Cited By
Improved off-policy training of diffusion samplers
7 February 2024
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved off-policy training of diffusion samplers"
33 / 83 papers shown
Title
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
85
114
0
30 Nov 2021
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
48
230
0
17 Nov 2021
Amortized Variational Inference for Simple Hierarchical Models
Abhinav Agrawal
Justin Domke
BDL
34
24
0
04 Nov 2021
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
212
174
0
21 Oct 2021
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
63
92
0
14 Oct 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
101
328
0
08 Jun 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
72
385
0
29 Apr 2021
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
337
3,686
0
18 Feb 2021
Nested Sampling Methods
J. Buchner
65
61
0
24 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
148
665
0
22 Jan 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
335
6,480
0
26 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
188
51
0
20 Oct 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
625
18,096
0
19 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
63
140
0
16 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
64
111
0
11 May 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
288
197
0
13 Mar 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
127
185
0
16 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
48
109
0
15 Jan 2020
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
164
210
0
23 May 2019
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
51
218
0
26 Apr 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
58
106
0
09 Mar 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
64
101
0
05 Mar 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
144
873
0
02 Oct 2018
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
266
3,696
0
26 May 2016
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
313
4,182
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
301
6,949
0
12 Mar 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
127
945
0
18 Feb 2015
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
136
1,167
0
31 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
259
2,622
0
29 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
165
4,302
0
18 Nov 2011
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions
Natesh S. Pillai
Andrew M. Stuart
Alexandre Hoang Thiery
90
99
0
02 Mar 2011
Previous
1
2