Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.04836
Cited By
v1
v2
v3
v4 (latest)
On the Completeness of Invariant Geometric Deep Learning Models
7 February 2024
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Completeness of Invariant Geometric Deep Learning Models"
7 / 57 papers shown
Title
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
194
1,645
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,705
0
01 Oct 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
98
978
0
22 Feb 2018
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
516
15,331
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,496
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
343
1,839
0
02 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
677
29,183
0
09 Sep 2016
Previous
1
2