ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04362
  4. Cited By
Neural Networks Learn Statistics of Increasing Complexity
v1v2 (latest)

Neural Networks Learn Statistics of Increasing Complexity

6 February 2024
Nora Belrose
Quintin Pope
Lucia Quirke
Alex Troy Mallen
Xiaoli Z. Fern
ArXiv (abs)PDFHTMLGithub (34★)

Papers citing "Neural Networks Learn Statistics of Increasing Complexity"

29 / 29 papers shown
Title
A distributional simplicity bias in the learning dynamics of transformers
A distributional simplicity bias in the learning dynamics of transformers
Riccardo Rende
Federica Gerace
Alessandro Laio
Sebastian Goldt
122
9
0
17 Feb 2025
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models
  across Computer Vision Tasks
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
Micah Goldblum
Hossein Souri
Renkun Ni
Manli Shu
Viraj Prabhu
...
Adrien Bardes
Judy Hoffman
Ramalingam Chellappa
Andrew Gordon Wilson
Tom Goldstein
VLM
159
68
0
30 Oct 2023
Pythia: A Suite for Analyzing Large Language Models Across Training and
  Scaling
Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
Stella Biderman
Hailey Schoelkopf
Quentin G. Anthony
Herbie Bradley
Kyle O'Brien
...
USVSN Sai Prashanth
Edward Raff
Aviya Skowron
Lintang Sutawika
Oskar van der Wal
110
1,307
0
03 Apr 2023
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Sanghyun Woo
Shoubhik Debnath
Ronghang Hu
Xinlei Chen
Zhuang Liu
In So Kweon
Saining Xie
SyDa
156
811
0
02 Jan 2023
Neural networks trained with SGD learn distributions of increasing
  complexity
Neural networks trained with SGD learn distributions of increasing complexity
Maria Refinetti
Alessandro Ingrosso
Sebastian Goldt
UQCV
120
43
0
21 Nov 2022
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
323
528
0
24 Sep 2022
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
221
1,831
0
18 Nov 2021
The Grammar-Learning Trajectories of Neural Language Models
The Grammar-Learning Trajectories of Neural Language Models
Leshem Choshen
Guy Hacohen
D. Weinshall
Omri Abend
97
29
0
13 Sep 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
476
2,123
0
31 Dec 2020
Deep frequency principle towards understanding why deeper learning is
  faster
Deep frequency principle towards understanding why deeper learning is faster
Zhi-Qin John Xu
Hanxu Zhou
90
44
0
28 Jul 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
  Regression and Infinitely Wide Neural Networks
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
120
190
0
23 Jun 2020
Designing Network Design Spaces
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
107
1,697
0
30 Mar 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
92
185
0
10 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
651
4,925
0
23 Jan 2020
On the adequacy of untuned warmup for adaptive optimization
On the adequacy of untuned warmup for adaptive optimization
Jerry Ma
Denis Yarats
95
70
0
09 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
270
3,508
0
30 Sep 2019
Understanding Generalization through Visualizations
Understanding Generalization through Visualizations
Wenjie Huang
Z. Emam
Micah Goldblum
Liam H. Fowl
J. K. Terry
Furong Huang
Tom Goldstein
AI4CE
51
80
0
07 Jun 2019
On the Inductive Bias of Neural Tangent Kernels
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
101
260
0
29 May 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural
  Networks
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
131
520
0
19 Jan 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
249
1,660
0
28 Dec 2018
Training behavior of deep neural network in frequency domain
Training behavior of deep neural network in frequency domain
Zhi-Qin John Xu
Yaoyu Zhang
Yan Xiao
AI4CE
80
320
0
03 Jul 2018
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
161
1,456
0
22 Jun 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
277
3,225
0
20 Jun 2018
Spreading vectors for similarity search
Spreading vectors for similarity search
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
MQ
127
121
0
08 Jun 2018
Deep learning generalizes because the parameter-function map is biased
  towards simple functions
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLTAI4CE
113
232
0
22 May 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
139
1,100
0
01 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,928
0
25 Aug 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
174
5,049
0
27 Jun 2016
On the Strong Convergence of the Optimal Linear Shrinkage Estimator for
  Large Dimensional Covariance Matrix
On the Strong Convergence of the Optimal Linear Shrinkage Estimator for Large Dimensional Covariance Matrix
Taras Bodnar
Arjun K. Gupta
Nestor Parolya
66
48
0
12 Aug 2013
1