Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.04005
Cited By
v1
v2 (latest)
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
6 February 2024
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning"
33 / 33 papers shown
Title
Self Supervised Correlation-based Permutations for Multi-View Clustering
Ran Eisenberg
Jonathan Svirsky
Ofir Lindenbaum
99
2
0
26 Feb 2024
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
57
7
0
19 Feb 2023
Auxiliary Learning as an Asymmetric Bargaining Game
Aviv Shamsian
Aviv Navon
Neta Glazer
Kenji Kawaguchi
Gal Chechik
Ethan Fetaya
64
8
0
31 Jan 2023
Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach
H. Fernando
Han Shen
Miao Liu
Subhajit Chaudhury
K. Murugesan
Tianyi Chen
79
9
0
23 Oct 2022
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
Nikolaos Dimitriadis
P. Frossard
Franccois Fleuret
71
25
0
18 Oct 2022
Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
Derrick Xin
Behrooz Ghorbani
Ankush Garg
Orhan Firat
Justin Gilmer
MoMe
122
65
0
23 Sep 2022
Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning
Baijiong Lin
Feiyang Ye
Yu Zhang
Ivor W. Tsang
99
99
0
20 Nov 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
221
315
0
28 Jun 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
130
109
0
11 Apr 2021
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
106
141
0
12 Feb 2021
Deep Learning-Based Human Pose Estimation: A Survey
Ce Zheng
Wenhan Wu
Chong Chen
Taojiannan Yang
Sijie Zhu
Ju Shen
N. Kehtarnavaz
M. Shah
3DH
193
592
0
24 Dec 2020
Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models
Zirui Wang
Yulia Tsvetkov
Orhan Firat
Yuan Cao
74
202
0
12 Oct 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
88
289
0
24 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
115
656
0
20 Feb 2020
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
184
1,228
0
19 Jan 2020
Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Scott Standley
Amir Zamir
Dawn Chen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
105
517
0
18 May 2019
Ray Interference: a Source of Plateaus in Deep Reinforcement Learning
Tom Schaul
Diana Borsa
Joseph Modayil
Razvan Pascanu
70
63
0
25 Apr 2019
MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning
Sumanth Chennupati
Ganesh Sistu
S. Yogamani
S. Rawashdeh
60
94
0
15 Apr 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
239
4,364
0
06 Mar 2019
Hierarchical and Interpretable Skill Acquisition in Multi-task Reinforcement Learning
Tianmin Shu
Caiming Xiong
R. Socher
OffRL
138
140
0
20 Dec 2017
Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task Learning
Clemens Rosenbaum
Tim Klinger
Matthew D Riemer
84
247
0
03 Nov 2017
An Overview of Multi-Task Learning in Deep Neural Networks
Sebastian Ruder
CVBM
159
2,831
0
15 Jun 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
272
3,135
0
19 May 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,496
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
337
1,839
0
02 Mar 2017
Age Progression/Regression by Conditional Adversarial Autoencoder
Zhifei Zhang
Yang Song
Hairong Qi
GAN
CVBM
87
1,118
0
27 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
842
5,841
0
05 Dec 2016
Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer
Coline Devin
Abhishek Gupta
Trevor Darrell
Pieter Abbeel
Sergey Levine
OffRL
84
400
0
22 Sep 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
298
4,812
0
04 Jan 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
256
889
0
06 Nov 2015
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,615
0
01 Sep 2014
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
170
274
0
24 Feb 2014
Expectation Propagation for approximate Bayesian inference
T. Minka
137
1,909
0
10 Jan 2013
1