Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.00435
Cited By
A practical existence theorem for reduced order models based on convolutional autoencoders
1 February 2024
N. R. Franco
Simone Brugiapaglia
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A practical existence theorem for reduced order models based on convolutional autoencoders"
18 / 18 papers shown
Title
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
49
4
0
04 Apr 2024
On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields
N. R. Franco
Daniel Fraulin
Andrea Manzoni
P. Zunino
AI4CE
37
4
0
18 Oct 2023
Operator learning with PCA-Net: upper and lower complexity bounds
S. Lanthaler
41
25
0
28 Mar 2023
Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-Collocation method
F. Romor
G. Stabile
G. Rozza
40
23
0
01 Mar 2022
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
103
448
0
19 Aug 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
59
45
0
10 Mar 2021
POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
S. Fresca
Andrea Manzoni
AI4CE
56
214
0
28 Jan 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
70
29
0
11 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
484
2,397
0
18 Oct 2020
Deep learning of thermodynamics-aware reduced-order models from data
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
AI4CE
36
79
0
03 Jul 2020
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
Siddhartha Mishra
T. Konstantin Rusch
68
50
0
26 May 2020
The gap between theory and practice in function approximation with deep neural networks
Ben Adcock
N. Dexter
44
93
0
16 Jan 2020
A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
S. Fresca
Luca Dede'
Andrea Manzoni
AI4CE
56
262
0
12 Jan 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
224
2,119
0
08 Oct 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
100
141
0
05 May 2019
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
63
198
0
31 Mar 2019
Equivalence of approximation by convolutional neural networks and fully-connected networks
P. Petersen
Felix Voigtländer
54
79
0
04 Sep 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
225
3,461
0
09 Mar 2018
1