ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.16317
26
25

Operator learning with PCA-Net: upper and lower complexity bounds

28 March 2023
S. Lanthaler
ArXivPDFHTML
Abstract

PCA-Net is a recently proposed neural operator architecture which combines principal component analysis (PCA) with neural networks to approximate operators between infinite-dimensional function spaces. The present work develops approximation theory for this approach, improving and significantly extending previous work in this direction: First, a novel universal approximation result is derived, under minimal assumptions on the underlying operator and the data-generating distribution. Then, two potential obstacles to efficient operator learning with PCA-Net are identified, and made precise through lower complexity bounds; the first relates to the complexity of the output distribution, measured by a slow decay of the PCA eigenvalues. The other obstacle relates to the inherent complexity of the space of operators between infinite-dimensional input and output spaces, resulting in a rigorous and quantifiable statement of a "curse of parametric complexity", an infinite-dimensional analogue of the well-known curse of dimensionality encountered in high-dimensional approximation problems. In addition to these lower bounds, upper complexity bounds are finally derived. A suitable smoothness criterion is shown to ensure an algebraic decay of the PCA eigenvalues. Furthermore, it is shown that PCA-Net can overcome the general curse for specific operators of interest, arising from the Darcy flow and the Navier-Stokes equations.

View on arXiv
Comments on this paper