ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.16753
  4. Cited By
MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with
  Mutual Scoring of the Unlabeled Images

MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images

30 January 2024
Xurui Li
Ziming Huang
Feng Xue
Yu Zhou
ArXivPDFHTML

Papers citing "MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images"

21 / 21 papers shown
Title
AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
Bin-Bin Gao
Yue Zhu
Jiangtao Yan
Y. Cai
W. Zhang
Meng Wang
Jun Liu
Y. Liu
L. Wang
Chengjie Wang
VLM
41
0
0
15 May 2025
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Bin-Bin Gao
VLM
25
0
0
14 May 2025
LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
Peijian Zeng
Feiyan Pang
Zhanbo Wang
Aimin Yang
74
0
0
28 Apr 2025
MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and Segmentation in Zero-Shot Learning
MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and Segmentation in Zero-Shot Learning
Ylli Sadikaj
Hongkuan Zhou
Lavdim Halilaj
Stefan Schmid
Steffen Staab
Claudia Plant
23
0
0
09 Apr 2025
TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection
TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection
Yoon Gyo Jung
Jaewoo Park
Jaeho Yoon
Kuan-Chuan Peng
Wonchul Kim
Andrew Beng Jin Teoh
Octavia Camps
49
0
0
03 Apr 2025
Statistical Study of Sensor Data and Investigation of ML-based Calibration Algorithms for Inexpensive Sensor Modules: Experiments from Cape Point
Statistical Study of Sensor Data and Investigation of ML-based Calibration Algorithms for Inexpensive Sensor Modules: Experiments from Cape Point
Travis Barrett
Amit Kumar Mishra
45
1
0
09 Mar 2025
Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection
Wei Luo
Yunkang Cao
Haiming Yao
Xiaotian Zhang
Jianan Lou
Y. Cheng
Weiming Shen
Wenyong Yu
59
2
0
04 Mar 2025
PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness
Yurui Pan
Lidong Wang
Yuchao Chen
Wenbing Zhu
Bo Peng
M. Chi
69
0
0
03 Mar 2025
Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection
Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection
Fenfang Tao
G. Xie
Fang Zhao
Xiangbo Shu
36
2
0
23 Dec 2024
AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios
AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios
Ziming Huang
Xurui Li
Haotian Liu
Feng Xue
Yuzhe Wang
Yu Zhou
37
0
0
18 Oct 2024
PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot
  3D Anomaly Detection
PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection
Qihang Zhou
Jiangtao Yan
Shibo He
Wenchao Meng
Jiming Chen
3DPC
45
6
0
01 Oct 2024
From Zero to Hero: Cold-Start Anomaly Detection
From Zero to Hero: Cold-Start Anomaly Detection
Tal Reiss
George Kour
Naama Zwerdling
Ateret Anaby-Tavor
Yedid Hoshen
39
0
0
30 May 2024
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
Simon Damm
M. Laszkiewicz
Johannes Lederer
Asja Fischer
54
3
0
23 May 2024
Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection
Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection
Zhaoxiang Zhang
Hanqiu Deng
Jinan Bao
Xingyu Li
VLM
36
1
0
08 May 2024
Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection
Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection
Jiaqi Zhu
Shaofeng Cai
Fang Deng
Junran Wu
Junran Wu
55
15
0
15 Apr 2024
Understanding normalization in contrastive representation learning and
  out-of-distribution detection
Understanding normalization in contrastive representation learning and out-of-distribution detection
T. L. Gia
Jaehyun Ahn
OODD
33
1
0
23 Dec 2023
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
Zhikang Liu
Yiming Zhou
Yuansheng Xu
Zilei Wang
75
229
0
27 Mar 2023
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
Jongheon Jeong
Yang Zou
Taewan Kim
Dongqing Zhang
Avinash Ravichandran
O. Dabeer
VLM
75
186
0
26 Mar 2023
Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and
  Localization
Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization
Hannah M. Schlüter
Jeremy Tan
Benjamin Hou
Bernhard Kainz
118
128
0
30 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
317
5,775
0
29 Apr 2021
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and
  Localization
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization
P. Mishra
Riccardo Verk
Daniele Fornasier
C. Piciarelli
G. Foresti
ViT
80
287
0
20 Apr 2021
1