ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12756
  4. Cited By
What the Weight?! A Unified Framework for Zero-Shot Knowledge
  Composition

What the Weight?! A Unified Framework for Zero-Shot Knowledge Composition

23 January 2024
Carolin Holtermann
Markus Frohmann
Navid Rekabsaz
Anne Lauscher
    MoMe
ArXivPDFHTML

Papers citing "What the Weight?! A Unified Framework for Zero-Shot Knowledge Composition"

26 / 26 papers shown
Title
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Yaqing Wang
Sahaj Agarwal
Subhabrata Mukherjee
Xiaodong Liu
Jing Gao
Ahmed Hassan Awadallah
Jianfeng Gao
MoE
77
133
0
31 Oct 2022
Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language
  Models
Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models
Margaret Li
Suchin Gururangan
Tim Dettmers
M. Lewis
Tim Althoff
Noah A. Smith
Luke Zettlemoyer
MoMe
84
148
0
05 Aug 2022
No Language Left Behind: Scaling Human-Centered Machine Translation
No Language Left Behind: Scaling Human-Centered Machine Translation
Nllb team
Marta R. Costa-jussá
James Cross
Onur cCelebi
Maha Elbayad
...
Alexandre Mourachko
C. Ropers
Safiyyah Saleem
Holger Schwenk
Jeff Wang
MoE
220
1,260
0
11 Jul 2022
Fewer Errors, but More Stereotypes? The Effect of Model Size on Gender
  Bias
Fewer Errors, but More Stereotypes? The Effect of Model Size on Gender Bias
Yarden Tal
Inbal Magar
Roy Schwartz
50
35
0
20 Jun 2022
Towards Climate Awareness in NLP Research
Towards Climate Awareness in NLP Research
Daniel Hershcovich
Nicolas Webersinke
Mathias Kraus
J. Bingler
Markus Leippold
72
33
0
10 May 2022
Fair and Argumentative Language Modeling for Computational Argumentation
Fair and Argumentative Language Modeling for Computational Argumentation
Carolin Holtermann
Anne Lauscher
Simone Paolo Ponzetto
39
21
0
08 Apr 2022
Beyond Distillation: Task-level Mixture-of-Experts for Efficient
  Inference
Beyond Distillation: Task-level Mixture-of-Experts for Efficient Inference
Sneha Kudugunta
Yanping Huang
Ankur Bapna
M. Krikun
Dmitry Lepikhin
Minh-Thang Luong
Orhan Firat
MoE
245
109
0
24 Sep 2021
Efficient Test Time Adapter Ensembling for Low-resource Language
  Varieties
Efficient Test Time Adapter Ensembling for Low-resource Language Varieties
Xinyi Wang
Yulia Tsvetkov
Sebastian Ruder
Graham Neubig
48
35
0
10 Sep 2021
Sustainable Modular Debiasing of Language Models
Sustainable Modular Debiasing of Language Models
Anne Lauscher
Tobias Lüken
Goran Glavaš
106
121
0
08 Sep 2021
DEMix Layers: Disentangling Domains for Modular Language Modeling
DEMix Layers: Disentangling Domains for Modular Language Modeling
Suchin Gururangan
Michael Lewis
Ari Holtzman
Noah A. Smith
Luke Zettlemoyer
KELM
MoE
91
134
0
11 Aug 2021
Towards Understanding and Mitigating Social Biases in Language Models
Towards Understanding and Mitigating Social Biases in Language Models
Paul Pu Liang
Chiyu Wu
Louis-Philippe Morency
Ruslan Salakhutdinov
93
388
0
24 Jun 2021
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Rabeeh Karimi Mahabadi
James Henderson
Sebastian Ruder
MoE
100
485
0
08 Jun 2021
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean
  Crawled Corpus
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Jesse Dodge
Maarten Sap
Ana Marasović
William Agnew
Gabriel Ilharco
Dirk Groeneveld
Margaret Mitchell
Matt Gardner
AILaw
115
446
0
18 Apr 2021
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li
Percy Liang
223
4,254
0
01 Jan 2021
Parameter-Efficient Transfer Learning with Diff Pruning
Parameter-Efficient Transfer Learning with Diff Pruning
Demi Guo
Alexander M. Rush
Yoon Kim
74
400
0
14 Dec 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic
  Sharding
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Zhiwen Chen
MoE
89
1,162
0
30 Jun 2020
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
Pengcheng He
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
AAML
137
2,731
0
05 Jun 2020
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
Su Lin Blodgett
Solon Barocas
Hal Daumé
Hanna M. Wallach
155
1,236
0
28 May 2020
AdapterFusion: Non-Destructive Task Composition for Transfer Learning
AdapterFusion: Non-Destructive Task Composition for Transfer Learning
Jonas Pfeiffer
Aishwarya Kamath
Andreas Rucklé
Kyunghyun Cho
Iryna Gurevych
CLL
MoMe
129
849
0
01 May 2020
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters
Ruize Wang
Duyu Tang
Nan Duan
Zhongyu Wei
Xuanjing Huang
Jianshu Ji
Guihong Cao
Daxin Jiang
Ming Zhou
KELM
87
553
0
05 Feb 2020
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
419
20,127
0
23 Oct 2019
Simple, Scalable Adaptation for Neural Machine Translation
Simple, Scalable Adaptation for Neural Machine Translation
Ankur Bapna
N. Arivazhagan
Orhan Firat
AI4CE
100
417
0
18 Sep 2019
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Nils Reimers
Iryna Gurevych
1.3K
12,193
0
27 Aug 2019
BERT Rediscovers the Classical NLP Pipeline
BERT Rediscovers the Classical NLP Pipeline
Ian Tenney
Dipanjan Das
Ellie Pavlick
MILM
SSeg
133
1,471
0
15 May 2019
Learning multiple visual domains with residual adapters
Learning multiple visual domains with residual adapters
Sylvestre-Alvise Rebuffi
Hakan Bilen
Andrea Vedaldi
OOD
160
933
0
22 May 2017
What to do about non-standard (or non-canonical) language in NLP
What to do about non-standard (or non-canonical) language in NLP
Barbara Plank
41
96
0
28 Aug 2016
1